v

Algorithms

dummies

A Wiley Brand

Relate algorithms to
real-world uses

Develop skills for
using algorithms
Learn to use Python* to test
how algorithms work

John Paul Mueller
Luca Massaron

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

[~ "~ Y

060

Algorithms

by John Paul Mueller and Luca Massaron

dummies

A Wiley Brand

Algorithms For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2017 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017936606
ISBN 978-1-119-33049-3 (pbk); ISBN 978-1-119-33053-0 (ebk); ISBN 978-1-119-33052-3 (ebk)
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Contents at a Glance

Introduction..................... 1
Part 1: GettingStarted.................................... 7
cHAPTER 1: Introducing Algorithms i 9
cHAapTER 22 Considering Algorithm Design ... 23
cHAPTER 3: Using Python to Work with Algorithms.t 43
cHAPTER 4: Introducing Python for Algorithm Programming 67
cHaprTEr 5: Performing Essential Data Manipulations Using Python............. 91
Part 2: Understanding the Need to Sort and Search 113
CHAPTER6: StructuringData ...t i i e 115
cHAPTER 7: Arranging and SearchingData ..., 133
Part 3: Exploring the World of Graphs 153
cHapTer 8: Understanding Graph Basics ... 155
CHAPTER9: Reconnectingthe Dots.ttt iiiinns 173
CHAPTER 10: Discovering Graph Secrets 197
cHAPTER 11: Getting the Right Webpage o i 207
Part 4: Struggling withBigData............................... 223
CHAPTER 122 Managing BigDatattt 225
cHAPTER 13: Parallelizing Operations. 249
CHAPTER 14: COmpressing Data i e 265
Part 5: Challenging Difficult Problems....................... 281
cHAPTER 15: Working with Greedy Algorithms. o .. 283
CHAPTER 16: Relying on Dynamic Programmingc.ooviiiiiiinnne... 299
cHAPTER 17: Using Randomized Algorithms. oo i i, 321
cHAPTER 18: Performing Local Search......... oo i i 339
CHAPTER 19: Employing Linear Programming.ccooviiiiiiiiiinen.. 357
cHAPTER 20: Considering Heuristics. i 371
Part6:ThePartofTens... 389
cHAPTER 21: Ten Algorithms That Are ChangingtheWorld..................... 391
cHAPTER 22: Ten Algorithmic Problems Yetto Solve. o L. 399

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Table of Contents

INTRODUCTION ... e 1
ABOUt ThISBOOK. ... 1

Foolish ASSumptions.t i e 3
lconsUsedinThisBooko it 3

Beyond the BoOK.ot 4
WheretoGofromHere i 5

PART 1: GETTING STARTED ... 7
caerera: INtroducing Algorithms.......................... ... 9
Describing Algorithms 10

Defining algorithmuseso i 11

Finding algorithms everywhere. i ... 14

Using Computers to Solve Problems oot 15
Leveraging modern CPUsand GPUSovuun... 16

Working with special-purpose chips. ..., 17

Leveraging Networks.ov et 18

Leveraging availabledata.......... o i i 18
Distinguishing between Issues and Solutions. 19

Being correct and efficient........ i i 19

Discovering thereisnofreelunch 20

Adapting the strategy tothe problem 20

Describing algorithmsinalinguafranca...................... 20

Facing hard problems. o i 21

Structuring Data to Obtaina Solution 21
Understanding a computer's pointofview.................... 22

Arranging data makes the difference......................... 22

caerer 22 Considering Algorithm Design 23
StartingtoSolveaProblem i 24
Modeling real-world problems 25

Finding solutions and counterexamples 26

Standing on the shoulders of giants. 27

Dividing and CoONQUENiNG . .. oottt ees 28
Avoiding brute-force solutions il 29

Starting by makingitsimpler....... o i 29

Breaking down a problem is usually better.................... 30

Learning that Greed CanBe Goodoiiiiiiiiiinaann, 31
Applying greedy reasoning.oviiiii i 31
Reachingagoodsolution........ 32

Table of Contents A"/

vi

CHAPTER 3:

CHAPTER 4:

Computing Costs and Following Heuristics. 33

Representing the problemasaspace 33
Going random and being blessed by luck 34
Using a heuristicand acostfunction......................... 35
Evaluating Algorithms. 35
Simulating using abstract machines. 36
Gettingeven more abstract., 37
Working with functions. oo i i i 38
Using Python to Work with Algorithms.............. 43
Considering the Benefits of Python o i, 45
Understanding why this book uses Python.................... 45
Working with MATLAB ... o e 47
Considering other algorithm testing environments............. 48
Looking at the Python Distributions. n. 48
Obtaining Analytics Anaconda., 49
Considering Enthought Canopy Expressccooovvee... 50
Considering pythonxy. 50
Considering WinPythono i i 51
Installing Pythonon LinuXovoii i i 51
Installing Pythonon MacOS. ...t 52
Installing PythononWindows.ot 54
Downloading the Datasets and Example Code.................... 58
Using Jupyter Notebook, 58
Defining the code repository. ...t 59
Understanding the datasets used in thisbook................. 65

Introducing Python for Algorithm

Programming.............................. 67
Working with Numbersand Logic.cooiiiiiiiiinn. 68
Performing variable assignments..................., 69
Doing arithmeticttt e 70
Comparing data by using Boolean expressions 72
Creating and Using Strings.ot 74
Interactingwith Dates.o e 76
Creatingand Using FUNCLiONSottt 77
Creating reusable functions., 77
Calling funCtionsttt 78
Using Conditional and Loop Statements............... ... n. 81
Making decisions using the if statement....................... 81
Choosing between multiple options using nested decisions 82
Performing repetitive tasks using the forloop................. 83
Using the while statement........ it 84
Storing Data Using Sets, Lists,and Tuples................. 85

Algorithms For Dummies

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Creating Sets. ...t 85

Creating listS. ..o v et 86
Creatingand usingtuples, 88
Defining Useful Iterators oot 89
Indexing Data Using Dictionaries ..., 90

caerers: Performing Essential Data Manipulations

UsingPython .. 91
Performing Calculations Using Vectors and Matrixes 92
Understanding scalar and vector operations 93
Performing vector multiplication 95
Creating a matrix is therightwaytostart..................... 95
Multiplying matrixesottt 97
Defining advanced matrix operations 98
Creating Combinations the RightWay 100
Distinguishing permutations 100
Shuffling combinations.o i 101
Facing repetitions 103
Getting the Desired Results Using Recursion 103
Explaining recursion 103
Eliminating tail call recursion. i, 106
Performing Tasks More Quickly, 107
Considering divideand conquer.ccooiviiiiineen... 107
Distinguishing between different possible solutions........... 110
PART 2: UNDERSTANDING THE NEED
TOSORTANDSEARCHco 113
charters: Structu ring Data.......................... 115
Determining the Need for Structure.t 116
Making it easier toseethecontent.............., 116
Matching data from varioussources, 117
Considering the need for remediation....................... 118
Stacking and PilingDatainOrder............ccoooiiiiiinaae... 121
Orderinginstacks ... e 121
USING QUEBUES . . oottt et et 123
Finding data using dictionariescooviiiiiinenn... 124
Workingwith Trees i i e 125
Understanding the basicsoftreest 125
Buildingatree ...t i e e 126
Representing RelationsinaGraph............ ... oot 128
GoiNg beyond trees. . .ot 128
Building graphs ...t 130

Table of Contents vii

cwaerer 7. Arranging and SearchingData 133

Sorting Data Using Mergesort and Quicksort.................... 134
Defining why sorting data isimportant 134
Orderingdatanaively......... ..o, 135
Employing better sort techniques. 137

Using Search TreesandtheHeap. ..., 142
Considering the need to search effectively................... 143
Building a binary searchtree........... il 145
Performing specialized searches using a binary heap.......... 146

Relyingon Hashing i 147
Putting everything into buckets. 148
Avoiding collisions. 149
Creating your own hash function 150

PART 3: EXPLORING THE WORLD OF GRAPHS............. 153
caerers: Understanding Graph Basics 155

Explaining the Importance of Networks. 156
Considering the essenceofagraph.............. 156
Finding graphs everywhere i i 158
Showing the social side of graphs. 159
Understanding subgraphs. oo it 160

DefiningHowto Drawa Graph........ ..., 161
Distinguishing the key attributes 162
Drawingthe graph........ ... 163

Measuring Graph Functionality............ ... oo i, 164
Counting edges and vertexesc.coouveiinennenneenn. 164
Computing centrality.covvn et i e e 166

Putting a Graph in NumericFormat............... ... oo un.. 169
Addingagraphtoamatrixo, 170
Using sparse representationsc.oivniiiinnenenn.. 171
Usingalisttoholdagraph it 171

CHAPTER 9: Reconnecting theDots 173

Traversing a Graph Efficiently o i i 174
Creatingthe grapho e 175
Applying breadth-firstsearch 176
Applying depth-firstsearch o i i 177
Determining which applicationtouse 179

Sorting the Graph Elements. i 180
Working on Directed Acyclic Graphs (DAGS) 181
Relying on topological sorting, 182

Reducing to a Minimum Spanning Tree.............coovvivenn.. 183

viii Algorithms For Dummies

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Discovering the correct algorithmstouse.................... 185

Introducing priority qUEUESttt 186

Leveraging Prim’s algorithm 187

Testing Kruskal's algorithm o i, 189

Determining which algorithm worksbest 191

Finding the ShortestRoutecoiviiiiiiin i, 192

Defining what it means to find the shortest path.............. 192

Explaining Dijkstra's algorithm 194

cuaerer 10: Discovering Graph Secrets............................ 197

Envisioning Social Networks as Graphs.. 198

Clustering networks in groups.ovviiiineenneennn. 198

Discovering communities.t 201

Navigatinga Graph 203

Counting the degrees of separation......................... 204

Walkingagraphrandomly........ 206

CHAPTER 11: Getting the nght Web page ... 207

Finding the World in a Search Engine........................... 208

Searching the Internetfordata.................. 208

Considering how to find the rightdata 208

Explaining the PageRank Algorithm 210
Understanding the reasoning behind the

PageRank algorithm o i i 210

Explaining the nuts and bolts of PageRank................... 212

Implementing PageRank i 212

Implementing a Pythonscript..............oo i 213

Struggling with a naive implementation 216

Introducing boredom and teleporting 219

Looking inside the life of a searchengine 220

Considering other uses of PageRank 221

Going Beyond the PageRank Paradigm 221

Introducing semanticqueriescooiiiiiiiin i, 222

Using Al for ranking searchresults. 222

PART 4: STRUGGLING WITHBIGDATA...................... 223

cuaerer 1z Managing BigData ... 225

Transforming PowerintoDataccooiviiiiinneeinnnn 226

Understanding Moore’s implications 226

Finding dataeverywhere i i 228

Getting algorithms into business 231

Streaming Flows of Dataoiiiiiiiiiiniiiiineeenn 232

Analyzing streams with the rightrecipe...................... 234

Reservingtherightdata........ i ... 235

Table of Contents ix

Sketching an Answer from StreamData 239

Filtering stream elementsby heart.......................... 239
Demonstrating the Bloomfilter, 242

Finding the number of distinctelements..................... 245

Learning to count objectsinastream 247

CHAPTER 13: Parallelizing Operations 249
Managing Immense Amountsof Data.......................... 250
Understanding the parallel paradigm 250

Distributing files and operations. 252

Employing the MapReduce solution. 254

Working Out Algorithms for MapReduce. 258

Setting up a MapReduce simulation......................... 259

Inquiring by mappingoovei 261

charter 12: COM pressing Data.................................... 265
Making Data Smaller. 266
Understandingencodingoooiiiiiniiiiinneinnn.. 266

Considering the effects of compression 267

Choosing a particular kind of compression................... 269

Choosing your encodingwisely. ..., 271

Encoding using Huffman compression 273
Remembering sequenceswith LZW 275

PART 5: CHALLENGING DIFFICULT PROBLEMS............ 281
cuarrer 1s: Working with Greedy Algorithms.................... 283
Deciding When It Is BettertoBe Greedycovvvnn.. 284
Understanding why greedyisgood 285

Keeping greedy algorithms undercontrol.................... 286

Considering NP complete problems. 288

Finding Out How Greedy CanBe Useful 290
Arranging cached computerdata.............coovininn... 290

Competing for resourcesoovvtine i 291

Revisiting Huffmancoding............. ..., 294

cuarer 16: Relying on Dynamic Programming.................. 299
Explaining Dynamic Programming, 300
Obtaining a historicalbasis o i 300

Making problems dynamic............c.o i 301

Casting recursion dynamically. 302

Leveraging memoization ...t 305

Discovering the Best DynamicRecipescn.. 308

Algorithms For Dummies

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Looking inside the knapsack i, 308

Touring around Citiesovt et e e e 312
Approximating stringsearch i 317

cuarrer 17: UsSing Randomized Algorithms 321
Defining How Randomization Worksoo..t. 322
Considering why randomizationisneeded................... 322
Understanding how probabilityworks. 323
Understanding distributions o i, 325

Simulating the use of the Monte Carlo method 328

Putting Randomness intoyour Logic 330
Calculating a median using Quickselect. 330

Doing simulations using MonteCarlo 333

Ordering faster with Quicksort, 336

cuarrer 1s: Performing Local SearchL. 339
Understanding Local Searchcoo i, 340

Knowing the neighborhood 340

Presenting local searchtricks it 342
Explaining hill climbing with n-queens....................... 343

Discovering simulated annealing 346

Avoiding repeats using Tabu Search. 347

Solving satisfiability of Boolean circuits......................... 348

Solving 2-SAT using randomization. 349
Implementing the Pythoncode............ 350

Realizing that the starting pointis important................. 354

cuarrer 19: Employing Linear Programming 357
Using Linear FunctionsasaTool............coiiiviiiiinnn.. 358

Grasping the basicmathyouneed.......................... 359

Learning to simplify when planning 361

Working with geometry using simplex. 361
Understanding the limitations. 363

Using Linear Programmingin Practice............ oot 364
Settingup PuLPathome oo, 364

Optimizing production andrevenueccovvunnn... 365

cuarer 20: CONsidering Heuristics. 371
Differentiating Heuristicsovvi vt 372
Considering the goals of heuristics. 372

Going from geneticto Alot 373

Routing Robots Using Heuristics., 374

Scouting in unknown territories il 374

Using distance measures as heuristics 376

Table of Contents xi

xii

Explaining Path Finding Algorithms 377

CreatiNng amaze.t e 377

Looking for a quick best-firstroute., 380

Going heuristically around by A*o 384

PART6: THEPARTOFTENS.................... 389
cuarrer 21: T€N Algorithms That Are Changing the World. 391
UsSiNg SOrt ROULINES. . . oot e e e 392

Looking for Things with Search Routines. 393

Shaking Things Up with Random Numbers...................... 393
Performing Data Compressionvvvunn et 394

Keeping Data Secretttt e 394
Changingthe DataDomainciviiniin i, 395
Analyzing LinKs. . ..ot 395

Spotting Data Patterns 396

Dealing with Automation and Automatic Responses.............. 397

Creating Unique Identifierso, 397
cuarrer 22: T€N Algorithmic Problems Yet to Solve............. 399
Dealing with Text Searches i 400
Differentiating Words 400
Determining Whether an Application WIillEnd 401

Creating and Using One-Way Functions. 401
Multiplying Really Large Numbers it 402
Dividinga Resource Equally........ ... it 402
Reducing Edit Distance Calculation Time........................ 403

Solving Problems Quickly. 403
Playingthe Parity Gamet 404
Understanding Spatial Issues 404

INDEX 405

Algorithms For Dummies

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir gl —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Introduction

ou need to learn about algorithms for school or work. Yet, all the books

you’ve tried on the subject end up being more along the lines of really good

sleep-inducing aids rather than texts to teach you something. Assuming
that you can get past the arcane symbols obviously written by a demented two-
year-old with a penchant for squiggles, you end up having no idea of why you’d
even want to know anything about them. Most math texts are boring! However,
Algorithms For Dummies is different. The first thing you’ll note is that this book has
a definite lack of odd symbols (especially of the squiggly sort) floating about. Yes,
you see a few (it is a math book, after all), but what you find instead are clear
instructions for using algorithms that actually have names and a history behind
them to perform useful tasks. You'll encounter simple coding techniques that
perform amazing things that will intrigue your friends and certainly make them
jealous as you perform amazing feats of math that they can’t begin to understand.
You get all this without having to strain your brain, even a little, and you won’t
even fall asleep (well, unless you really want to do so).

About This Book

Algorithms For Dummies is the math book that you wanted in college but didn’t get.
You discover, for example, that algorithms aren’t new. After all, the Babylonians
used algorithms to perform simple tasks as early as 1,600 BC. If the Babylonians
could figure this stuff out, certainly you can, too! This book actually has three
things that you won’t find in most math books:

¥ Algorithms that have actual names and a historical basis so that you can
remember the algorithm and know why someone took time to create it

¥ Simple explanations of how the algorithm performs amazing feats of data
manipulation, data analysis, or probability prediction

¥ Code that shows how to use the algorithm without actually dealing with
arcane symbols that no one without a math degree can understand

Part of the emphasis of this book is on using the right tools. This book uses Python
to perform various tasks. Python has special features that make working with

Introduction 1

algorithms significantly easier. For example, Python provides access to a huge
array of packages that let you do just about anything you can imagine, and more
than a few that you can’t. However, unlike many texts that use Python, this one
doesn’t bury you in packages. We use a select group of packages that provide great
flexibility with a lot of functionality, but don’t require you to pay anything. You
can go through this entire book without forking over a cent of your hard-earned
money.

You also discover some interesting techniques in this book. The most important is
that you don’t just see the algorithms used to perform tasks; you also get an
explanation of how the algorithms work. Unlike many other books, Algorithms For
Dummies enables you to fully understand what you’re doing, but without requiring
you to have a PhD in math. Every one of the examples shows the expected output
and tells you why that output is important. You aren’t left with the feeling that
something is missing.

Of course, you might still be worried about the whole programming environment
issue, and this book doesn’t leave you in the dark there, either. At the beginning,
you find complete installation instructions for Anaconda, which is the Python
language Integrated Development Environment (IDE) used for this book. In addi-
tion, quick primers (with references) help you understand the basic Python pro-
gramming that you need to perform. The emphasis is on getting you up and
running as quickly as possible, and to make examples straightforward and simple
so that the code doesn’t become a stumbling block to learning.

To help you absorb the concepts, this book uses the following conventions:

¥ Text that you're meant to type just as it appears in the book is in bold. The
exception is when you're working through a step list: Because each step is
bold, the text to type is not bold.

¥ Words that we want you to type in that are also in italics are used as place-
holders, which means that you need to replace them with something that
works for you. For example, if you see “Type Your Name and press Enter,” you
need to replace Your Name with your actual name.

¥ We also use italics for terms we define. This means that you don't have to rely
on other sources to provide the definitions you need.

3 Web addresses and programming code appear in monofont. If you're reading
a digital version of this book on a device connected to the Internet, you can
click the live link to visit that website, like this: http://www.dummies.com.

3 When you need to click command sequences, you see them separated by a
special arrow, like this: File => New File, which tells you to click File and then
New File.

2 Algorithms For Dummies

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

http://www.dummies.com
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Foolish Assumptions

You might find it difficult to believe that we’ve assumed anything about you —
after all, we haven’t even met you yet! Although most assumptions are indeed
foolish, we made certain assumptions to provide a starting point for the book.

The first assumption is that you’re familiar with the platform you want to use,
because the book doesn’t provide any guidance in this regard. (Chapter 3 does,
however, tell you how to install Anaconda; Chapter 4 provides a basic Python lan-
guage overview; and Chapter 5 helps you understand how to perform the essential
data manipulations using Python.) To give you the maximum information about
Python with regard to algorithms, this book doesn’t discuss any platform-specific
issues. You really do need to know how to install applications, use applications, and
generally work with your chosen platform before you begin working with this book.

This book isn’t a math primer. Yes, you see lots of examples of complex math, but
the emphasis is on helping you use Python to perform common tasks using algo-
rithms rather than learning math theory. However, you do get explanations of
many of the algorithms used in the book so that you can understand how the
algorithms work. Chapters 1 and 2 guide you through a better understanding of
precisely what you need to know in order to use this book successfully.

This book also assumes that you can access items on the Internet. Sprinkled
throughout are numerous references to online material that will enhance your
learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book

TIP

WARNING

As you read this book, you encounter icons in the margins that indicate material
of interest (or not, as the case may be). Here’s what the icons mean:

Tips are nice because they help you save time or perform some task without a lot
of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try so that you can get the maximum benefit from
Python, or in performing algorithm-related or data analysis—related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you
should avoid doing anything that’s marked with a Warning icon. Otherwise, you
might find that your application fails to work as expected, you get incorrect
answers from seemingly bulletproof algorithms, or (in the worst-case scenario)
you lose data.

Introduction 3

Whenever you see this icon, think advanced tip or technique. You might find these
=) tidbits of useful information just too boring for words, or they could contain the
\J solution you need to get a program running. Skip these bits of information when-
TEcHNicaL ever you like.
STUFF
If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to work with Python, or to perform
rememser algorithm-related or data analysis—related tasks successfully.

Beyond the Book

This book isn’t the end of your Python or algorithm learning experience — it’s
really just the beginning. We provide online content to make this book more flex-
ible and better able to meet your needs. That way, as we receive email from you,
we can address questions and tell you how updates to Python, or its associated
add-ons affect book content. In fact, you gain access to all these cool additions:

3 Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don't you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python,
Anaconda, and algorithms that not every other person knows. To find the
cheat sheet for this book, go to www.dummies.com and search for Algorithms
For Dummies Cheat Sheet. It contains really neat information such as finding
the algorithms that you commonly need to perform specific tasks.

¥ Updates: Sometimes changes happen. For example, we might not have seen
an upcoming change when we looked into our crystal ball during the writing
of this book. In the past, this possibility simply meant that the book became
outdated and less useful, but you can now find updates to the book at
www . dummies.com/go/algorithmsfd.

In addition to these updates, check out the blog posts with answers to reader
questions and demonstrations of useful book-related techniques athttp://
blog. johnmuellerbooks.com/.

3 Companion files: Hey! Who really wants to type all the code in the book and
reconstruct all those plots manually? Most readers prefer to spend their time
actually working with Python, performing tasks using algorithms, and seeing
the interesting things they can do, rather than typing. Fortunately for you, the
examples used in the book are available for download, so all you need to do is
read the book to learn algorithm usage techniques. You can find these files at
www . dummies.com/go/algorithmsfd.

4 Algorithms For Dummies

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://www.dummies.com
http://www.dummies.com/go/algorithmsfd
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com/go/algorithmsfd
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Where to Go from Here

It’s time to start your algorithm learning adventure! If you’re completely new to
algorithms, you should start with Chapter 1 and progress through the book at a
pace that allows you to absorb as much of the material as possible. Make sure to
read about Python because the book uses this language as needed for the
examples.

If you’re a novice who'’s in an absolute rush to get going with algorithms as quickly
as possible, you can skip to Chapter 3 with the understanding that you may find
some topics a bit confusing later. If you already have Anaconda installed, you can
skim Chapter 3. To use this book, you must install Python version 3.4. The exam-
ples won’t work with the 2.x version of Python because this version doesn’t sup-
port some of the packages we use.

Readers who have some exposure to Python, and have the appropriate language
versions installed, can save reading time by moving directly to Chapter 6. You can
always go back to earlier chapters as necessary when you have questions. However,
you do need to understand how each technique works before moving to the next
one. Every technique, coding example, and procedure has important lessons for
you, and you could miss vital content if you start skipping too much information.

Introduction 5

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Getting Started

IN THIS PART ...

Discover how you can use algorithms to perform
practical tasks.

Understand how algorithms are put together.
Install and configure Python to work with algorithms.
Use Python to work with algorithms.

Perform basic algorithm manipulations using Python.

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

Telegram Channel: @konkurcomputer

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Defining what is meant by algorithm

» Relying on computers to use
algorithms to provide solutions

» Determining how issues differ from
solutions

» Performing data manipulation so
that you can find a solution

Chapter 1
Introducing Algorithms

f you’re in the majority of people, you’re likely confused as you open this book

and begin your adventure with algorithms because most texts never tell you

what an algorithm is, much less why you’d want to use one. Most texts assume
that you already know something about algorithms and that you are reading about
them to refine and elevate your knowledge. Interestingly enough, some books
actually provide a confusing definition for algorithm that doesn’t really define it
after all, and sometimes even equates it to some other form of abstract, numeric,
or symbolic expression.

The first section of this chapter is dedicated to helping you understand precisely
what the term algorithm means and why you benefit from knowing how to use
algorithms. Far from being arcane, algorithms are actually used all over the place,
and you have probably used or been helped by them for years without really know-
ing it. In truth, algorithms are becoming the spine that supports and regulates
what is important in an increasingly complex and technological society like ours.

This chapter also discusses how you use computers to create solutions to prob-
lems using algorithms, how to distinguish between issues and solutions, and what
you need to do to manipulate data to discover a solution. The goal of this chapter
is to help you differentiate between algorithms and other tasks that people per-
form that they confuse with algorithms. In short, you discover why you really
want to know about algorithms and how to apply them to data.

CHAPTER 1 Introducing Algorithms 9

Describing Algorithms

10

Even though people have solved algorithms manually for literally thousands of
years, doing so can consume huge amounts of time and require many numeric
computations, depending on the complexity of the problem you want to solve.
Algorithms are all about finding solutions, and the speedier and easier, the better.
A huge gap exists between mathematical algorithms historically created by
geniuses of their time, such as Euclid, Newton, or Gauss, and modern algorithms
created in universities as well as private research and development laboratories.
The main reason for this gap is the use of computers. Using computers to solve
problems by employing the appropriate algorithm speeds up the task signifi-
cantly, which is the reason that the development of new algorithms has pro-
gressed so fast since the appearance of powerful computer systems. In fact, you
may have noticed that more and more solutions to problems appear quickly today,
in part, because computer power is both cheap and constantly increasing. Given
their ability to solve problems using algorithms, computers (sometimes in the
form of special hardware) are becoming ubiquitous.

When working with algorithms, you consider the inputs, desired outputs, and pro-
cess (a sequence of actions) used to obtain a desired output from a given input.
However, you can get the terminology wrong and view algorithms in the wrong way
because you haven’t really considered how they work in a real-world setting. The
third section of the chapter discusses algorithms in a real-world manner, that is, by
viewing the terminologies used to understand algorithms and to present algorithms
in a way that shows that the real-world is often less than perfect. Understanding
how to describe an algorithm in a realistic manner also makes it possible to temper
expectations to reflect the realities of what an algorithm can actually do.

This book views algorithms in many ways. However, because it provides an over-
view telling how algorithms are changing and enriching people’s lives, the focus
is on algorithms used to manipulate data with a computer providing the required
processing. With this in mind, the algorithms you work with in this book require
data input in a specific form, which sometimes means changing the data to match
the algorithm’s requirements. Data manipulation doesn’t change the content of
the data. What it does do is change the presentation and form of the data so that
an algorithm can help you see new patterns that weren’t apparent before (but
were actually present in the data all along).

Sources of information about algorithms often present them in a way that proves
confusing because they’re too sophisticated or downright incorrect. Although you
may find other definitions, this book uses the following definitions for terms that
people often confuse with algorithms (but aren’t):

3 Equation: Numbers and symbols that, when taken as a whole, equate to a
specific value. An equation always contains an equals sign so that you know

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

that the numbers and symbols represent the specific value on the other side
of the equals sign. Equations generally contain variable information presented
as a symbol, but they're not required to use variables.

¥ Formula: A combination of numbers and symbols used to express informa-
tion or ideas. Formulas normally present mathematical or logical concepts,
such as defining the Greatest Common Divisor (GCD) of two integers (the
video at https://www.khanacademy.org/math/in-sixth-grade-math/
playing-numbers/highest-common-factor/v/greatest-common-divisor
tells how this works). Generally, they show the relationship between two or
more variables. Most people see a formula as a special kind of equation.

¥ Algorithm: A sequence of steps used to solve a problem. The sequence
presents a unique method of addressing an issue by providing a particular
solution. An algorithm need not represent mathematical or logical concepts,
even though the presentations in this book often do fall into that category
because people most commonly use algorithms in this manner. Some special
formulas are also algorithms, such as the quadratic formula. In order for a
process to represent an algorithm, it must be

Finite: The algorithm must eventually solve the problem. This book
discusses problems with a known solution so that you can evaluate
whether an algorithm solves the problem correctly.

Well-defined: The series of steps must be precise and present steps that
are understandable. Especially because computers are involved in
algorithm use, the computer must be able to understand the steps to
create a usable algorithm.

Effective: An algorithm must solve all cases of the problem for which
someone defined it. An algorithm should always solve the problem it has
to solve. Even though you should anticipate some failures, the incidence of
failure is rare and occurs only in situations that are acceptable for the
intended algorithm use.

With these definitions in mind, the following sections help to clarify the precise
nature of algorithms. The goal isn’t to provide a precise definition for algorithms,
but rather to help you understand how algorithms fit into the grand scheme of
things so that you can develop your own understanding of what algorithms are
and why they’re so important.

Defining algorithm uses

An algorithm always presents a series of steps and doesn’t necessarily perform
these steps to solve a math formula. The scope of algorithms is incredibly large.
You can find algorithms that solve problems in science, medicine, finance, indus-
trial production and supply, and communication. Algorithms provide support for

CHAPTER 1 Introducing Algorithms 11

https://www.khanacademy.org/math/in-sixth-grade-math/playing-numbers/highest-common-factor/v/greatest-common-divisor
https://www.khanacademy.org/math/in-sixth-grade-math/playing-numbers/highest-common-factor/v/greatest-common-divisor

12

TIP

REMEMBER

all parts of a person’s daily life. Any time a sequence of actions achieving
something in our life is finite, well-defined, and effective, you can view it as an
algorithm. For example, you can turn even something as trivial and simple as
making toast into an algorithm. In fact, the making toast procedure often appears
in computer science classes, as discussed at http://brianaspinall.com/
now—thats—how-you-make-toast-using-computer-algorithms/.

Unfortunately, the algorithm on the site is flawed. The instructor never removes the
toast from the wrapper and never plugs the toaster in, so the result is damaged plain
bread still in its wrapper stuffed into a nonfunctional toaster (see the discussion at
http://blog. johnmuellerbooks.com/2013/03/04/procedures—in-technical-
writing/ for details). Even so, the idea is the correct one, yet it requires some slight,
but essential, adjustments to make the algorithm finite and effective.

One of the most common uses of algorithms is as a means of solving formulas. For
example, when working with the GCD of two integer values, you can perform the
task manually by listing each of the factors for the two integers and then selecting
the greatest factor that is common to both. For example, GCD(20, 25) is 5 because
5 is the largest number that divides into both 20 and 25. However, processing
every GCD manually (which is actually a kind of algorithm) is time consuming and
error prone, so the Greek mathematician Euclid (https://en.wikipedia.org/
wiki/Euclid) created an algorithm to perform the task. You can see the Euclidean
method demonstrated at https://www.khanacademy.org/computing/computer—
science/cryptography/modarithmetic/a/the-euclidean-algorithm.

However, a single formula, which is a presentation of symbols and numbers used
to express information or ideas, can have multiple solutions, each of which is an
algorithm. In the case of GCD, another common algorithm is one created by
Lehmer (see https://www.imsc.res.in/~kapil/crypto/notes/nodei1.html
and https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm for details).
Because you can solve any formula multiple ways, people often spend a great deal
of time comparing algorithms to determine which one works best in a given situ-
ation. (See a comparison of Euclid to Lehmer at http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf.)

Because our society and its accompanying technology are gaining momentum,
running faster and faster, we need algorithms that can keep the pace. Scientific
achievements such as sequencing the human genome were possible in our age
because scientists found algorithms that run fast enough to complete the task. Mea-
suring which algorithm is better in a given situation, or in an average usage situa-
tion, is really serious stuff and a topic of discussion among computer scientists.

When it comes to computer science, the same algorithm can see multiple presenta-
tions. For example, you can present the Euclidean algorithm in both a recursive and
an iterative manner, as explained at http://cs.stackexchange.com/questions/
1447 /what-is-most-efficient-for-ged. In short, algorithms present a method

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Euclid
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.imsc.res.in/~kapil/crypto/notes/node11.html
https://en.wikipedia.org/wiki/Lehmer's_GCD_algorithm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf
http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd
http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

of solving formulas, but it would be a mistake to say that just one acceptable algo-
rithm exists for any given formula or that there is only one acceptable presentation
of an algorithm. Using algorithms to solve problems of various sorts has a long
history — it isn’t something that has just happened.

Even if you limit your gaze to computer science, data science, artificial intelli-
gence, and other technical areas, you find many kinds of algorithms — too many
for a single book. For example, The Art of Computer Programming, by Donald
E. Knuth (Addison-Wesley), spans 3,168 pages in four volumes (see http://www.
amazon .com/exec/obidos/ASIN/0321751043/datacservip@f-20/) and still
doesn’t manage to cover the topic (the author intended to write more volumes).
However, here are some interesting uses for you to consider:

¥ Searching: Locating information or verifying that the information you see is
the information you want is an essential task. Without this ability, it wouldn’t
be possible to perform many tasks online, such as finding the website on the
Internet selling the perfect coffee pot for your office.

¥ Sorting: Determining which order to use to present information is important
because most people today suffer from information overload, and putting
information in order is one way to reduce the onrush of data. You likely
learned as a child that when you place your toys in order, it's easier to find
and play with a toy that interests you, compared to having toys scattered
randomly everywhere. Imagine going to Amazon, finding that over a thousand
coffee pots are for sale there, and yet not being able to sort them in order of
price or most positive review. Moreover, many complex algorithms require
data in the proper order to work dependably, therefore ordering is an
important requisite for solving more problems.

¥ Transforming: Converting one sort of data to another sort of data is critical to
understanding and using the data effectively. For example, you might
understand imperial weights just fine, but all your sources use the metric
system. Converting between the two systems helps you understand the data.
Likewise, the Fast Fourier Transform (FFT) converts signals between the time
domain and the frequency domain so that it becomes possible to make things
like your Wi-Fi router work.

¥ Scheduling: Making the use of resources fair to all concerned is another way
in which algorithms make their presence known in a big way. For example,
timing lights at intersections are no longer simple devices that count down the
seconds between light changes. Modern devices consider all sorts of issues,
such as the time of day, weather conditions, and flow of traffic. Scheduling
comes in many forms, however. For example, consider how your computer
runs multiple tasks at the same time. Without a scheduling algorithm, the
operating system might grab all the available resources and keep your
application from doing any useful work.

CHAPTER 1 Introducing Algorithms 13

http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/
http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/

14

REMEMBER

3 Graph analysis: Deciding on the shortest line between two points finds all
sorts of uses. For example, in a routing problem, your GPS couldn’t function
without this particular algorithm because it could never direct you along city
streets using the shortest route from point A to point B.

¥ Cryptography: Keeping data safe is an ongoing battle with hackers constantly
attacking data sources. Algorithms make it possible to analyze data, put it into
some other form, and then return it to its original form later.

3 Pseudorandom number generation: Imagine playing games that never
varied. You start at the same place; perform the same steps, in the same
manner, every time you play. Without the capability to generate seemingly
random numbers, many computer tasks become impossible.

This list presents an incredibly short overview. People use algorithms for many
different tasks and in many different ways, and constantly create new algorithms
to solve both existing problems and new problems. The most important issue to
consider when working with algorithms is that given a particular input, you
should expect a specific output. Secondary issues include how many resources the
algorithm requires to perform its task and how long it takes to complete the task.
Depending on the kind of issue and the sort of algorithm used, you may also need
to consider issues of accuracy and consistency.

Finding algorithms everywhere

The previous section mentions the toast algorithm for a specific reason. For some
reason, making toast is probably the most popular algorithm ever created. Many
grade-school children write their equivalent of the toast algorithm long before
they can even solve the most basic math. It’s not hard to imagine how many
variations of the toast algorithm exist and what the precise output is of each of
them. The results likely vary by individual and the level of creativity employed. In
short, algorithms appear in great variety and often in unexpected places.

Every task you perform on a computer involves algorithms. Some algorithms
appear as part of the computer hardware. (They are embedded, thus you hear of
embedded microprocessors.) The very act of booting a computer involves the use
of an algorithm. You also find algorithms in operating systems, applications, and
every other piece of software. Even users rely on algorithms. Scripts help direct
users to perform tasks in a specific way, but those same steps could appear as
written instructions or as part of an organizational policy statement.

Daily routines often devolve into algorithms. Think about how you spend your
day. If you’re like most people, you perform essentially the same tasks every day
in the same order, making your day an algorithm that solves the problem of how
to live successfully while expending the least amount of energy possible. After all,
that’s what a routine does; it makes us efficient.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Emergency procedures often rely on algorithms. You take the emergency card out
of the packet in front of you in the plane. On it are a series of pictographs showing
how to open the emergency door and extend the slide. In some cases, you might
not even see words, but the pictures convey the procedure required to perform the
task and solve the problem of getting out of the plane in a hurry. Throughout this
book, you see the same three elements for every algorithm:

1. Describe the problem.
2. Create a series of steps to solve the problem (well defined).

3. Perform the steps to obtain a desired result (finite and effective).

Using Computers to Solve Problems

The term computer sounds quite technical and possibly a bit overwhelming to
some people, but people today are neck deep (possibly even deeper) in computers.
You wear at least one computer, your smartphone, most of the time. If you have
any sort of special device, such as a pacemaker, it also includes a computer. Your
smart TV contains at least one computer, as does your smart appliance. A car can
contain as many as 30 computers in the form of embedded microprocessors that
regulate fuel consumption, engine combustion, transmission, steering, and sta-
bility (according to a New York Times article at http://www.nytimes.com/
2010/02/05/technology/@5electronics.html) and more lines of code than a jet
fighter. The automated cars appearing in the car market will require even more
embedded microprocessors and algorithms of greater complexity. A computer
exists to solve problems quickly and with less effort than solving them manually.
Consequently, it shouldn’t surprise you that this book uses still more computers
to help you understand algorithms better.

Computers vary in a number of ways. The computer in your watch is quite small;
the one on your desktop quite large. Supercomputers are immense and contain
many smaller computers all tasked to work together to solve complex issues, such
as tomorrow’s weather. The most complex algorithms rely on special computer
functionality to obtain solutions to the issues people design them to solve. Yes,
you could use lesser resources to perform the task, but the trade-off is waiting a
lot longer for an answer or getting an answer that lacks sufficient accuracy to
provide a useful solution. In some cases, you wait so long that the answer is no
longer important. With the need for both speed and accuracy in mind, the follow-
ing sections discuss some special computer features that can affect algorithms.

CHAPTER 1 Introducing Algorithms 15

http://www.nytimes.com/2010/02/05/technology/05electronics.html
http://www.nytimes.com/2010/02/05/technology/05electronics.html

Leveraging modern CPUs and GPUs

General-purpose processors, CPUs, started out as a means to solve problems using
algorithms. However, their general-purpose nature also means that a CPU can
perform a great many other tasks, such as moving data around or interacting with
external devices. A general-purpose processor does many things well, which
means that it can perform the steps required to complete an algorithm, but not
necessarily fast. In fact, owners of early general-purpose processors could add
math coprocessors (special math-specific chips) to their systems to gain a speed
advantage (see http://www.computerhope.com/jargon/m/mathcopr.htm for
details). Today, general-purpose processors have the math coprocessor embedded
into them, so when you get an Intel i7 processor, you actually get multiple proces-
sors in a single package.

Xeon Phi processor used with the Xeon chips (see http://www.intel.com/
content/www/us/en/processors/xeon/xeon-phi-detail.html and https://

TP en.wiki2.org/wiki/Intel_Xeon_Phi for details). You use the Xeon Phi chip
alongside a Xeon chip when performing compute-intensive tasks such as machine
learning (see Machine Learning For Dummies, by John Mueller and Luca Massaron,
for details on how machine learning uses algorithms to determine how to perform
various tasks that help you use data to predict the unknown and to organize infor-
mation meaningfully).

‘ Interestingly enough, Intel still markets specialty processor add-ons, such as the

You may wonder why this section mentions Graphics Processing Units (GPUs).
After all, GPUs are supposed to take data, manipulate it in a special way, and then
display a pretty picture onscreen. Any computer hardware can serve more than
one purpose. It turns out that GPUs are particularly adept at performing data
transformations, which is a key task for solving algorithms in many cases. A GPU
is a special-purpose processor, but one with capabilities that lend themselves to
faster algorithm execution. It shouldn’t surprise you to discover that people who
create algorithms spend a lot of time thinking outside the box, which means that
they often see methods of solving issues in nontraditional approaches.

The point is that CPUs and GPUs form the most commonly used chips for per-
forming algorithm-related tasks. The first performs general-purpose tasks quite
well, and the second specializes in providing support for math-intensive tasks,
especially those that involve data transformations. Using multiple cores makes
parallel processing (performing more than one algorithmic step at a time) possi-
ble. Adding multiple chips increases the number of cores available. Having more
cores adds speed, but a number of factors keeps the speed gain to a minimum.
Using two i7 chips won’t produce double the speed of just one i7 chip.

16 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

http://www.computerhope.com/jargon/m/mathcopr.htm
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://en.wiki2.org/wiki/Intel_Xeon_Phi
https://en.wiki2.org/wiki/Intel_Xeon_Phi
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

o
T
TECHNICAL
STUFF

Working with special-purpose chips

A math coprocessor and a GPU are two examples of common special-purpose chips
in that you don’t see them used to perform tasks such as booting the system. How-
ever, algorithms often require the use of uncommon special-purpose chips to solve
problems. This isn’t a hardware book, but spending a little time looking around can
show you all sorts of interesting chips, such as the new artificial neurons that IBM
isworking on (see the story athttp: //www.computerworld.com/article/3103294/
computer-processors/ibm-creates-artificial-neurons-from-phase-change-
memory-for-cognitive-computing.html). Imagine performing algorithmic pro-
cessing using memory that simulates the human brain. It would create an interest-
ing environment for performing tasks that might not otherwise be possible today.

Neural networks, a technology that is used to simulate human thought and make
deep learning techniques possible for machine learning scenarios, are now bene-
fitting from the use of specialized chips, such as the Tesla P100 from NVidia (see
the story at https://www.technologyreview.com/s/601195/a-2-billion-
chip-to-accelerate-artificial-intelligence/ for details). These kinds of
chips not only perform algorithmic processing extremely fast, but learn as they
perform the tasks, making them faster still with each iteration. Learning comput-
ers will eventually power robots that can move (after a fashion) on their own, akin
to the robots seen in the movie I Robot (see one such robot described at http://
www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-
network/). There are also special chips that perform tasks such as visual recogni-
tion (see https://www.technologyreview.com/s/537211/a-better-way—-to-
build-brain-inspired-chips/ for details).

No matter how they work, specialized processors will eventually power all sorts of
algorithms that will have real-world consequences. You can already find many of
these real-world applications in a relatively simple form. For example, imagine
the tasks that a pizza-making robot would have to solve — the variables it would
have to consider on a real-time basis. This sort of robot already exists (this is just
one example of the many industrial robots used to produce material goods by
employing algorithms), and you can bet that it relies on algorithms to describe
what to do, as well as on special chips to ensure that the tasks are done quickly
(see the story at http://www.bloomberg.com/news/articles/2016-06-24/
inside-silicon-valley-s-robot-pizzeria).

Eventually, it might even be possible to use the human mind as a processor and
output the information through a special interface. Some companies are now
experimenting with putting processors directly into the human brain to enhance
its ability to process information (see the story at https://www.washingtonpost.
com/news/the-switch/wp/2016/08/15/putting—-a-computer-in-your-brain-
is-no-longer-science-fiction/ for details). Imagine a system in which humans
can solve algorithms at the speed of computers, but with the creative “what if”
potential of humans.

CHAPTER 1 Introducing Algorithms 17

http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
https://www.technologyreview.com/s/601195/a-2-billion-chip-to-accelerate-artificial-intelligence/
https://www.technologyreview.com/s/601195/a-2-billion-chip-to-accelerate-artificial-intelligence/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
https://www.technologyreview.com/s/537211/a-better-way-to-build-brain-inspired-chips/
https://www.technologyreview.com/s/537211/a-better-way-to-build-brain-inspired-chips/
http://www.bloomberg.com/news/articles/2016-06-24/inside-silicon-valley-s-robot-pizzeria
http://www.bloomberg.com/news/articles/2016-06-24/inside-silicon-valley-s-robot-pizzeria
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/

18

Leveraging networks

Unless you have unlimited funds, using some algorithms effectively may not be
possible, even with specialized chips. In that case, you can network computers
together. Using special software, one computer, a master, can use the processors
of all slave computers running an agent (a kind of in-memory background appli-
cation that makes the processor available). Using this approach, you can solve
incredibly complex problems by offloading pieces of the problem to a number of
slave computers. As each computer in the network solves its part of the problem,
it sends the results back to the master, which puts the pieces together to create a
consolidated answer, a technique called cluster computing.

Lest you think this is the stuff of science fiction, people are already using cluster
computing techniques in all sorts of interesting ways. For example, the article at
http://www.zdnet.com/article/build-your-own-supercomputer—-out-of-
raspberry-pi-boards/ details how you can build your own supercomputer by
combining multiple Raspberry Pi (https://www.raspberrypi.org/) boards into
a single cluster.

Distributed computing, another version of cluster computing (but with a looser
organization) is also popular. In fact, you can find a list of distributed computing
projects athttp://www.distributedcomputing.info/projects.html. The list of
projects includes some major endeavors, such as Search for Extraterrestrial Intel-
ligence (SETI). You can also donate your computer’s extra processing power to
work on a cure for cancer. The list of potential projects is amazing.

Networks also let you access other people’s processing power in an unattached
form. For example, Amazon Web Services (AWS) and other vendors provide the
means to use their computers to perform your work. A network connection can
make the remote computers feel as if they’re part of your own network. The point
is that you can use networking in all sorts of ways to create connections between
computers to solve a variety of algorithms that would be too complicated to solve
using just your system.

Leveraging available data

Part of solving an algorithm has nothing to do with processing power, creative
thinking outside the box, or anything of a physical nature. To create a solution to
most problems, you also need data on which to base a conclusion. For example, in
the toast-making algorithm, you need to know about the availability of bread, a
toaster, electricity to power the toaster, and so on before you can solve the prob-
lem of actually making toast. The data becomes important because you can’t fin-
ish the algorithm when missing even one element of the required solution. Of
course, you may need additional input data as well. For example, the person

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://www.zdnet.com/article/build-your-own-supercomputer-out-of-raspberry-pi-boards/
http://www.zdnet.com/article/build-your-own-supercomputer-out-of-raspberry-pi-boards/
https://www.raspberrypi.org/
http://www.distributedcomputing.info/projects.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

wanting the toast may not like rye. If this is the case and all you have is rye bread
to use, the presence of bread still won’t result in a successful result.

Data comes from all sorts of sources and in all kinds of forms. You can stream data
from a source such as a real-time monitor, access a public data source, rely on
private data in a database, scrape the data from websites, or get it in myriad other
ways too numerous to mention here. The data may be static (unchanging) or
dynamic (constantly changing). You may find that the data is complete or missing
elements. The data may not appear in the right form (such as when you get impe-
rial units and require metric units when solving a weight problem). The data may
appear in a tabular format when you need it in some other form. It may reside in
an unstructured way (for instance in a NoSQL database or just in a bunch of dif-
ferent data files) when you need the formal formatting of a relational database. In
short, you need to know all sorts of things about the data used with your algo-
rithm in order to solve problems with it.

ways, this book pays a lot of attention to data. Starting in Chapter 6, you discover
just how data structure comes into play. Moving on to Chapter 7, you begin look-

rememser ing at how to search through data to find what you need. Chapters 12 through 14
help you work with big data. However, you can find some sort of data-specific
information in just about every chapter of the book because without data, an algo-
rithm can’t solve any problems.

@ Because data comes in so many forms and you need to work with it in so many

Distinguishing between Issues
and Solutions

This book discusses two parts of the algorithmic view of the real world. On the one
hand, you have issues, which are problems that you need to solve. An issue can
describe the desired output of an algorithm or it can describe a hurdle you must
overcome to obtain the desired output. Solutions are the methods, or steps, used to
address the issues. A solution can relate to just one step or many steps within the
algorithm. In fact, the output of an algorithm, the response to the last step, is a
solution. The following sections help you understand some of the important
aspects of issues and solutions.

Being correct and efficient

Using algorithms is all about getting an acceptable answer. The reason you look
for an acceptable answer is that some algorithms generate more than one answer
in response to fuzzy input data. Life often makes precise answers impossible to

CHAPTER 1 Introducing Algorithms 19

20

get. Of course, getting a precise answer is always the goal, but often you end up
with an acceptable answer instead.

Getting the most precise answer possible may take too much time. When you get
a precise answer but that answer comes too late to use, the information becomes
useless and you’ve wasted your time. Choosing between two algorithms that
address the same issue may come down to a choice between speed and precision.
A fast algorithm may not generate a precise answer, but the answer may still work
well enough to provide useful output.

Wrong answers can be a problem. Creating a lot of wrong answers fast is just as
bad as creating a lot of precisely correct answers slowly. Part of the focus of this
book is helping you find the middle ground between too fast and too slow, and
between inaccurate and too accurate. Even though your math teacher stressed the
need for providing the correct answer in the way expressed by the book you used
at the time, real-world math often involves weighing choices and making middle-
ground decisions that affect you in ways you might not think possible.

Discovering there is no free lunch

You may have heard the common myth that you can have everything in the way of
computer output without putting much effort into deriving the solution. Unfortu-
nately, no absolute solution exists to any problem, and better answers are often
quite costly. When working with algorithms, you quickly discover the need to pro-
vide additional resources when you require precise answers quickly. The size and
complexity of the data sources you use greatly affect the solution resolution as
well. As size and complexity increase, you find that the need to add resources
increases as well.

Adapting the strategy to the problem

Part 5 of this book looks at strategies you can use to decrease the cost of working
with algorithms. The best mathematicians use tricks to get more output from less
computing. For example, you can create an ultimate algorithm to solve an issue, or
you can use a host of simpler algorithms to solve the same issue, but using multiple
processors. The host of simple algorithms will usually work faster and better than
the single, complex algorithm, even though this approach seems counterintuitive.

Describing algorithms in a lingua franca

Algorithms do provide a basis for communication between people, even when
those individuals have different perspectives and speak different languages. For
example, Bayes’ Theorem (the probability of an event occurring given certain

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

premises; see https://betterexplained.com/articles/an-intuitive-and-
short-explanation-of-bayes-theorem/ for a quick explanation of this amazing
theorem)

P(BIE) = P(EIB)*P(B)/P(E)

appears the same whether you speak English, Spanish, Chinese, German, French, or
any other language. Regardless what language you speak, the algorithm looks the
same and acts the same given the same data. Algorithms help cross all sorts of divides
that serve to separate humans from each other by expressing ideas in a form that
anyone can prove. As you go through this book, you discover the beauty and magic
that algorithms can provide in communicating even subtle thoughts to others.

gramming languages as a means for explaining and communicating the formulas
they solve. You can find all the sorts of algorithms in C, C++, Java, Fortran, Python

TIP (as in this book), and other languages. Some writers rely on pseudocode to over-
come the fact that an algorithm may be proposed in a programming language that
you don’t know. Pseudocode is a way to describe computer operations by using
common English words.

‘ Apart from universal mathematical notations, algorithms take advantage of pro-

Facing hard problems

An important consideration when working with algorithms is that you can use
them to solve issues of any complexity. The algorithm doesn’t think, have emotion,
or care how you use it (or even abuse it). You can use algorithms in any way required
to solve an issue. For example, the same group of algorithms used to perform facial
recognition to act as an alternative to computer passwords (for security purposes)
can find terrorists lurking in an airport or recognize a lost child wandering the
streets. The same algorithm has different uses; how to use it depends on the inter-
ests of the user. Part of the reason you want to read this book carefully is to help
you solve those hard problems that may require only a simple algorithm to address.

Structuring Data to Obtain a Solution

Humans think about data in nonspecific ways and apply various rules to the same
data to understand it in ways that computers never can. A computer’s view of data
is structured, simple, uncompromising, and most definitely not creative. When
humans prepare data for a computer to use, the data often interacts with the algo-
rithms in unexpected ways and produces undesirable output. The problem is one
in which the human fails to appreciate the limited view of data that a computer
has. The following sections describe two aspects of data that you see illustrated in
many of the chapters to follow.

CHAPTER 1 Introducing Algorithms 21

https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/

22

REMEMBER

Understanding a computer’s point of view

A computer has a simple view of data, but it’s also a view that humans typically
don’t understand. For one thing, everything is a number to a computer because
computers aren’t designed to work with any other kind of data. Humans see char-
acters on the computer display and assume that the computer interacts with the
data in that manner, but the computer doesn’t understand the data or its implica-
tions. The letter A is simply the number 65 to the computer. In fact, it’s not truly
even the number 65. The computer sees a series of electrical impulses that equate
to a binary value of 0100 0001.

Computers also don’t understand the whole concept of uppercase and lowercase.
To a human, the lowercase a is simply another form of the uppercase A, but to a
computer they’re two different letters. A lowercase a appears as the number 97 to
the computer (a binary value of 0110 0001).

If these simple sorts of single letter comparisons could cause such problems
between humans and computers, it isn’t hard to imagine what happens when
humans start assuming too much about other kinds of data. For example, a com-
puter can’t hear or appreciate music. Yet, music comes out of the computer speak-
ers. The same holds true for graphics. A computer sees a series of 0s and 1s, not a
graphic containing a pretty scene of the countryside.

It’s important to consider data from the computer’s perspective when using algo-
rithms. The computer sees only 0s and 1s, nothing else. Consequently, when you
start working through the needs of the algorithm, you must view the data in that
manner. You may actually find it beneficial to know that the computer’s view of
data makes some solutions easier to find, not harder. You discover more about this
oddity in viewing data as the book progresses.

Arranging data makes the difference

Computers also have a strict idea about the form and structure of data. When you
begin working with algorithms, you find that a large part of the job involves mak-
ing the data appear in a form that the computer can use when using the algorithm
to find a solution to an issue. Although a human can mentally see patterns in data
that isn’t arranged precisely right, computers really do need the precision to find
the same pattern. The benefit of this precision is that computers can often make
new patterns visible. In fact, that’s one of the main reasons to use algorithms with
computers — to help locate new patterns and then use those patterns to perform
other tasks. For example, a computer may recognize a customer’s spending pat-
tern so that you can use the information to generate more sales automatically.

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Considering how to solve a problem

» Using a divide-and-conquer approach
to solving problems

» Understanding the greedy approach
to solving problems

» Determining the costs of problem
solutions

» Performing algorithm measurements

Chapter 2

Considering Algorithm
Design

s stated in Chapter 1, an algorithm consists of a series of steps used to

solve a problem. In most cases, input data provides the basis of solving the

problem and sometimes offers constraints that any solution must consider
before anyone will see the algorithm as being effective. The first section of this
chapter helps you consider the problem solution (the solution to the problem you’re
trying to solve). It helps you understand the need to create algorithms that are
both flexible (in that they can handle a wide range of data inputs) and effective (in
that they yield the desired output).

Some problems are quite complex. In fact, you look at them at first and may decide
that they’re too complicated to solve. Feeling overwhelmed by a problem is com-
mon. The most common way to solve the issue is to divide the problem into smaller
pieces, each of which is manageable on its own. The divide-and-conquer approach
to problem solving, discussed in this chapter’s second section, originally referred to
warfare (see http://classroom.synonym.com/civilization-invented-divide-
conquer-strategy-12746.html for a history of this approach). However, people
use the same ideas to cut problems of all sorts down to size.

CHAPTER 2 Considering Algorithm Design 23

http://classroom.synonym.com/civilization-invented-divide-conquer-strategy-12746.html
http://classroom.synonym.com/civilization-invented-divide-conquer-strategy-12746.html

REMEMBER

The third section of the chapter refers to the greedy approach to problem solving.
Greed normally has a negative connotation, but not in this case. A greedy algorithm
is one that makes an optimal choice at each problem-solving stage. By doing so,
it hopes to obtain an overall optimal solution to solve the problem. Unfortunately,
this strategy doesn’t always work, but it’s always worth a try. It often yields a good
enough solution, making it a good baseline.

No matter what problem-solving approach you choose, every algorithm comes
with costs. Being good shoppers, people who rely heavily on algorithms want the
best possible deal, which means performing a cost/benefit analysis. Of course,
getting the best deal also assumes that a person using the algorithm has some
idea of what sort of solution is good enough. Getting a solution that is too precise
or one that offers too much in the way of output is often wasteful, so part of keep-
ing costs under control is getting what you need as output and nothing more.

To know what you have with an algorithm, you need to know how to measure it in
various ways. Measurements create a picture of usability, size, resource usage,
and cost in your mind. More important, measurements offer the means of making
comparisons. You can’t compare algorithms without measurements. Until you can
compare the algorithms, you can’t choose the best one for a task.

Starting to Solve a Problem

24

Before you can solve any problem, you must understand it. It isn’t just a matter of
sizing up the problem, either. Knowing that you have certain inputs and require
certain outputs is a start, but that’s not really enough to create a solution. Part of
the solution process is to

3 Discover how other people have created new problem solutions
¥ Know what resources you have on hand
3 Determine the sorts of solutions that worked for similar problems in the past

¥ Consider what sorts of solutions haven't produced a desirable result

The following sections help you understand these phases of solving a problem.
Realize that you won’t necessarily perform these phases in order and that some-
times you revisit a phase after getting more information. The process of starting
a problem solution is iterative; you keep at it until you have a good understanding
of the problem at hand.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Modeling real-world problems

Real-world problems differ from those found in textbooks. When creating a text-
book, the author often creates a simple example to help the reader understand the
basic principles at work. The example models just one aspect of a more complex
problem. A real-world problem may require that you combine several techniques
to create a complete solution. For example, to locate the best answer to a problem,
you may:

1. Need to sort the answer set by a specific criterion.
2. Perform some sort of filtering and transformation.

3. Search the result.

Without this sequence of steps, comparing each of the answers adequately may
prove impossible, and you end up with a less-than-optimal result. A series of algo-
rithms used together to create a desired result is an ensemble. You can read about
their use in machine learning in Machine Learning For Dummies, by John Paul Muel-
ler and Luca Massaron (Wiley). The article at https://www.toptal .com/machine-
learning/ensemble-methods-machine-learning gives you a quick overview of
how ensembles work.

However, real-world problems are even more complex than simply looking at
static data or iterating that data only once. For example, anything that moves,
such as a car, airplane, or robot, receives constant input. Each updated input
includes error information that a real-world solution will need to incorporate into
the result in order to keep these machines working properly. In addition to other
algorithms, the constant calculations require the proportional integral derivative
(PID) algorithm (see http://www.ni.com/white-paper/3782/en/ for a detailed
explanation of this algorithm) to control the machine using a feedback loop. Every
calculation brings the solution used to control the machine into better focus,
which is why machines often go through a settling stage when you first turn them
on. (If you work with computers regularly, you might be used to the idea of itera-
tions. PIDs are for continuous systems; therefore, there are no iterations.) Finding
the right solution is called settling time — the time during which the algorithm
controlling the machine hasn’t yet found the right answer.

When modeling a real-world problem, you must also consider non-obvious issues
that crop up. An obvious solution, even one based on significant mathematical
input and solid theory, may not work. For example, during WWII, the allies had a
serious problem with bomber losses. Therefore, the engineers analyzed every bul-
let hole in every plane that came back. After the analysis, the engineers used their
solution to armor the allied planes more heavily to ensure that more of them
would come back. It didn’t work. Enter Abraham Wald. This mathematician sug-
gested a non-obvious solution: Put armor plating in all the places that lacked
bullet holes (because the areas with bullet holes are already strong enough;

CHAPTER 2 Considering Algorithm Design 25

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
http://www.ni.com/white-paper/3782/en/

26

REMEMBER

otherwise the plane wouldn’t have returned). The resulting solution did work and
is now used as the basis for survivor bias (the fact that the survivors of an incident
often don’t show what actually caused a loss) in working with algorithms. You can
read more about this fascinating bit of history at http://www.macgetit.com/
solving-problems—of-wwii-bombers/. The point is that biases and other prob-
lems in modeling problems can create solutions that don’t work.

Real-world modeling may also include the addition of what scientists normally
consider undesirable traits. For example, scientists often consider noise undesir-
able because it hides the underlying data. Consider a hearing aid, which removes
noise to enable someone to hear better (see the discussion at http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4111515/ for details). Many methods exist for
removing noise, some of which you can find in this book starting with Chapter 9
as part of other topic discussions. However, as counterintuitive as it might seem,
adding noise also requires an algorithm that provides useful output. For example,
Ken Perlin wanted to get rid of the machine-like look of computer-generated
graphics in 1983 and created an algorithm to do so. The result is Perlin noise (see
http://paulbourke.net/texture_colour/perlin/ for details). The effect is so
useful that Ken won an Academy Award for his work (see http://mrl.nyu.
edu/~perlin/doc/oscar.html for details). Other people, such as Steven Worley,
have created other sorts of noise that affect graphics in other ways (see the
discussion at http://procworld.blogspot.com/2011/05/hello-worley.html,
which compares Perlin noise to Worley noise). The point is that whether you need
to remove or add noise depends on the problem domain you want to solve. A real-
world scenario often requires choices that may not be obvious when working in
the lab or during the learning process.

The main gist of this section is that solutions often require several iterations to
create, you may have to spend a lot of time refining them, and obvious solutions
may not work at all. When modeling a real-world problem, you do begin with the
solutions found in textbooks, but then you must move beyond theory to find the
actual solution to your problem. As this book progresses, you’re exposed to a wide
variety of algorithms — all of which help you find solutions. The important thing
to remember is that you may need to combine these examples in various ways and
discover methods for interacting with data so that it lends itself to finding pat-
terns that match the output you require.

Finding solutions and counterexamples

The previous section introduces you to the vagaries of discovering real-world
solutions that consider issues that solutions found in the lab can’t consider.
However, just finding a solution — even a good one — isn’t sufficient because
even good solutions fail on occasion. Playing the devil’s advocate by locating
counterexamples is an important part of starting to solve a problem. The purpose
of counterexamples is to

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://www.macgetit.com/solving-problems-of-wwii-bombers/
http://www.macgetit.com/solving-problems-of-wwii-bombers/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111515/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111515/
http://paulbourke.net/texture_colour/perlin/
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://procworld.blogspot.com/2011/05/hello-worley.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

¥ Potentially disprove the solution
¥ Provide boundaries that define the solution better

¥ Consider situations in which the hypothesis used as a basis for the solution
remains untested

3 Help you understand the limits of the solution

A common scenario that illustrates a solution and counterexample is the state-
ment that all prime numbers are odd. (Prime numbers are integers that can be
divided only by themselves and 1 to produce an integer result.) Of course,
the number 2 is prime, but it’s also even, which makes the original statement
false. Someone making the statement could then qualify it by saying that all prime
numbers are odd except 2. The partial solution to the problem of finding all the
prime numbers is that you need to find odd numbers, except in the case of 2,
which is even. In this second case, disproving the solution is no longer possible,
but adding to the original statement provides a boundary.

By casting doubt on the original assertion, you can also consider situations in
which the hypothesis, all prime numbers except 2 are odd, may not hold true. For
example, 1 is an odd number but isn’t considered prime (see the discussion at
https://primes.utm.edu/notes/faqg/one.html for details). So now the original
statement has two boundaries, and you must restate it as follows: Prime numbers
are greater than 1 and usually odd, except for 2, which is even. The boundaries for
prime numbers are better defined by locating and considering counterexamples.
Just in case you’re wondering, 0 is also not considered a prime number, for the
reasons discussed at http://math.stackexchange.com/questions/539174/
is-zero-a-prime—-number.

As the complexity of a problem grows, the potential for finding counterexamples
grows as well. An essential rule to consider is that, as with reliability, having more
failure points means greater potential for a failure to occur. Thinking of algorithms
in this way is important. Ensembles of simple algorithms can produce better
results with fewer potential counterexamples than a single complex algorithm.

Standing on the shoulders of giants

A myth that defies explanation is that the techniques currently used to process
huge quantities of data are somehow new. Yes, new algorithms do appear all the
time, but the basis for these algorithms is all of the algorithms that have gone
before. In fact, when you think about Sir Isaac Newton, you might think of
someone who invented something new, yet even he stated (using correct spelling
for his time), “If I have seen further it is by standing on the sholders of Giants”
(see https://en.wikiquote.org/wiki/Isaac_Newton for additional quotes and
insights).

CHAPTER 2 Considering Algorithm Design 27

https://primes.utm.edu/notes/faq/one.html
http://math.stackexchange.com/questions/539174/is-zero-a-prime-number
http://math.stackexchange.com/questions/539174/is-zero-a-prime-number
https://en.wikiquote.org/wiki/Isaac_Newton

The fact is that the algorithms you use today weren’t even new in the days of
Aristotle (see http://plato.stanford.edu/entries/aristotle-mathematics/
for a discussion of how Aristotle used math) and Plato (see http://www.story
ofmathematics.com/greek_plato.html for a discussion of how Plato used math).
The origins of algorithms in use today are so hidden in history that the best that
anyone can say is that math relies on adaptations of knowledge from ancient
times. The use of algorithms since antiquity should give you a certain feeling of
comfort because the algorithms in use today are based on knowledge tested for
thousands of years.

This isn’t to say that some mathematicians haven’t overturned the apple cart over
the years. For example, John Nash’s theory, Nash Equilibrium, significantly
changed how economics are considered today (see https://www.khanacademy .
org/economics-finance-domain/microeconomics/nash-equilibrium-
tutorial for a basic tutorial on this theory). Of course, recognition for such work
comes slowly (and sometimes not at all). Nash had to wait for a long time before
he received much in the way of professional recognition (see the story at
https://www.princeton.edu/main/news/archive/S42/72/29C63/index.xml)
despite having won a Nobel Prize in economics for his contributions. Just in case
you’re interested, John Nash’s story is depicted in the movie A Beautiful Mind,
which contains some much-debated scenes, including one containing a claim that
the Nash Equilibrium somehow overturns some of the work of Adam Smith,
another contributor to economic theories. (See one such discussion at https://
www . quora.com/Was—Adam-Smith-wrong-as-claimed-by-John-Nash-in-the-
movie—-A-Beautiful-Mind.)

Dividing and Conquering

28

If solving problems were easy, everyone would do it. However, the world is still
filled with unsolved problems and the condition isn’t likely to change anytime
soon, for one simple reason: Problems often appear so large that no solution is
imaginable. Ancient warriors faced a similar problem. An opposing army would
seem so large and their forces so small as to make the problem of winning a war
unimaginably hard, perhaps impossible. Yet, by dividing the opposing army into
small pieces and attacking it a little at a time, a small army could potentially
defeat a much larger opponent. (The ancient Greeks, Romans, and Napoleon
Bonaparte were all great users of the divide-and-conquer strategy; see
Napoleon For Dummies, by J. David Markham [Wiley], for details.)

You face the same problem as those ancient warriors. Often, the resources at your
disposal seem quite small and inadequate. However, by dividing a huge problem
into small pieces so that you can understand each piece, you can eventually create
a solution that works for the problem as a whole. Algorithms have this premise at

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://plato.stanford.edu/entries/aristotle-mathematics/
http://www.storyofmathematics.com/greek_plato.html
http://www.storyofmathematics.com/greek_plato.html
https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial
https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial
https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial
https://www.princeton.edu/main/news/archive/S42/72/29C63/index.xml
https://www.quora.com/Was-Adam-Smith-wrong-as-claimed-by-John-Nash-in-the-movie-A-Beautiful-Mind
https://www.quora.com/Was-Adam-Smith-wrong-as-claimed-by-John-Nash-in-the-movie-A-Beautiful-Mind
https://www.quora.com/Was-Adam-Smith-wrong-as-claimed-by-John-Nash-in-the-movie-A-Beautiful-Mind
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

their core: to use steps to solve problems one small piece at a time. The following
sections help you understand the divide-and-conquer approach to problem solv-
ing in more detail.

Avoiding brute-force solutions

A brute-force solution is one in which you try each possible answer, one at a time,
to locate the best possible answer. It’s thorough, this much is certain, but it also
wastes time and resources in most cases. Testing every answer, even when it’s
easy to prove that a particular answer has no chance of success, wastes time that
an algorithm can use on answers that have a better chance of success. In addition,
testing the various answers using this approach generally wastes resources, such
as memory. Think of it this way: You want to break the combination for a lock, so
you begin at 0, 0, 0, even though you know that this particular combination has
no chance of success given the physical characteristics of combination locks. A
brute-force solution would proceed with testing 0, 0, 0 anyway and then move on
to the equally ridiculous o, 0, 1.

It’s important to understand that every solution type does come with advantages,
sometimes quite small. A brute-force solution has one such advantage. Because
you test every answer anyway, you don’t need to perform any sort of preprocess-
ing when working with a brute-force solution. The time saved in skipping the
preprocessing, though, is unlikely to ever pay back the time lost in trying every
answer. However, you may find occasion to use a brute-force solution when

¥ Finding a solution, if one exists, is essential.
3 The problem size is limited.
¥ You can use heuristics to reduce the size of the solution set.

¥ Simplicity of implementation is more important than speed.

Starting by making it simpler

The brute-force solution has a serious drawback. It looks at the entire problem at
one time. It’s sort of like going into a package and hunting book by book through
the shelves without ever considering any method of making your search simpler.
The divide-and-conquer approach to package searches is different. In this case,
you begin by dividing the package into children’s and adults’ sections. After that,
you divide the adults’ section into categories. Finally, you search just the part of the
category that contains the book of interest. This is the purpose of classification
systems such as the Dewey Decimal System (see https://en.wikipedia.org/
wiki/List_of_Dewey_Decimal_classes for a list of classes, hierarchical divisions,

CHAPTER 2 Considering Algorithm Design 29

https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes
https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes

and sections). The point is that divide and conquer simplifies the problem. You
make things faster and easier by reducing the number of book candidates.

The divide part of divide and conquer is an essential way to understand a problem
better as well. Trying to understand the layout of an entire package could prove
difficult. However, knowing that the book on comparative psychology you want to
find appears as part of Class 100 in Division 150 of Section 156 makes your job
easier. You can understand this smaller problem because you know that every
Section 156 book will contain something about the topic you wish to know about.
Algorithms work the same way. By making the problem simpler, you can create a
set of simpler steps to finding a problem solution, which reduces the time to find
the solution, reduces the number of resources used, and improves your chances of
finding precisely the solution you need.

Breaking down a problem is usually better

After you have divided a problem into manageable pieces, you need to conquer the
piece in question. This means creating a precise problem definition. You don’t
want just any book on comparative psychology; you want one written by George
Romanes. Knowing that the book you want appears in Section 156 of the Dewey
Decimal System is a good start, but it doesn’t solve the problem. Now you need a
process for reviewing every book in Section 156 for the specific book you need. The
process might go further still and look for books with specific content. To make
this process viable, you must break the problem down completely, define precisely
what you need, and then, after you understand the problem thoroughly, use the
correct set of steps (algorithm) to find what you need.

ALGORITHMS HAVE NO ABSOLUTES

You may think that you can create a scenario in which you can say that you always use a
particular kind of algorithm to solve a particular kind of problem. However, this isn't the
case. For example, you can find discussions of the relative merits of using brute-force
techniques against certain problems as compared to divide and conquer. It shouldn't
surprise you to discover that divide and conquer doesn’t win in every situation. For
example, when looking for the maximum value in an array, a brute-force approach can
win the day when the array isn't sorted. You can read a discussion of this particular topic
at http://stackoverflow.com/questions/11043226/why—-do-divide-and—
conquer—algorithms-often-run-faster-than-brute-force. The interesting
thing is that the brute-force approach also uses fewer resources in this particular case.
Always remember that rules have exceptions and knowing the exceptions can save you
time and effort later.

30 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

http://stackoverflow.com/questions/11043226/why-do-divide-and-conquer-algorithms-often-run-faster-than-brute-force
http://stackoverflow.com/questions/11043226/why-do-divide-and-conquer-algorithms-often-run-faster-than-brute-force
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Learning that Greed Can Be Good

©

REMEMBER

In some cases, you can’t see the end of a solution process or even know whether
you’re winning the war. The only thing you can really do is to ensure that you win
the individual battles to create a problem solution in hopes of also winning the war.
A greedy method to problem solving uses this approach. It looks for an overall solu-
tion such that it chooses the best possible outcome at each problem solution stage.

It seems that winning each battle would necessarily mean winning the war as
well, but sometimes the real world doesn’t work that way. A Pyrrhic victory is one
in which someone wins every battle but ends up losing the war because the cost of
the victory exceeds the gains of winning by such a large margin. You can read
about five Pyrrhic victories at http://www.history.com/news/history-lists/
5-famous-Pyrrhic-victories. The important lesson from these histories is that
a greedy algorithm often does work, but not always, so you need to consider the
best overall solution to a problem rather than become blinded by interim wins.
The following sections describe how to avoid the Pyrrhic victory when working
with algorithms.

Applying greedy reasoning

Greedy reasoning is often used as part of an optimization process. The algorithm
views the problem one step at a time and focuses just on the step at hand. Every
greedy algorithm makes two assumptions:

¥ You can make a single optimal choice at a given step.

¥ By choosing the optimal selection at each step, you can find an optimal
solution for the overall problem.

You can find many greedy algorithms, each optimized to perform particular tasks.
Here are some common examples of greedy algorithms used for graph analysis
(see Chapter 9 for more about graphs) and data compression (see Chapter 14 for
more about data compression) and the reason you might want to use them:

¥ Kruskal’'s Minimum Spanning Tree (MST): This algorithm actually demon-
strates one of the principles of greedy algorithms that people might not think
about immediately. In this case, the algorithm chooses the edge between two
nodes with the smallest value, not the greatest value as the word greedy might
initially convey. This sort of algorithm might help you find the shortest path
between two locations on a map or perform other graph-related tasks.

3 Prim’s MST: This algorithm splits an undirected graph (one in which direction
isn't considered) in half. It then selects the edge that connects the two halves
such that the total weight of the two halves is the smallest that it can be. You

CHAPTER 2 Considering Algorithm Design 31

http://www.history.com/news/history-lists/5-famous-pyrrhic-victories
http://www.history.com/news/history-lists/5-famous-pyrrhic-victories

32

REMEMBER

might find this algorithm used in a maze game to locate the shortest distance
between the start and the finish of the maze.

¥ Huffman Encoding: This algorithm is quite famous in computers because it
forms the basis for many data-compression techniques. The algorithm assigns
a code to every unique data entry in a stream of entries, such that the most
commonly used data entry receives the shortest code. For example, the letter
E would normally receive the shortest code when compressing English text,
because you use it more often than any other letter in the alphabet. By
changing the encoding technique, you can compress the text and make it
considerably smaller, reducing transmission time.

Reaching a good solution

Scientists and mathematicians use greedy algorithms so often that Chapter 15
covers them in depth. However, it’s important to realize that what you really want
is a good solution, not just a particular solution. In most cases, a good solution
provides optimal results of the sort you can measure, but the word good can include
many meanings, depending on the problem domain. You must ask what problem
you want to solve and which solution solves the problem in a manner that best
meets your needs. For example, when working in engineering, you might need to
weigh solutions that consider weight, size, cost, or other considerations, or per-
haps some combination of all these outputs that meet a specific requirement.

To put this issue into context, say that you build a coin machine that creates change
for particular monetary amounts using the fewest coins possible (perhaps as part
of an automatic checkout at a store). The reason to use the fewest coins possible is
to reduce equipment wear, the weight of coins needed, and the time required to
make change (your customers are always in a hurry, after all). A greedy solution
solves the problem by using the largest coins possible. For example, to output
$0.16 in change, you use a dime ($0.10), a nickel ($0.05), and a penny ($0.01).

A problem occurs when you’re unable to use every coin type in creating a solution.
The change machine might be out of nickels, for example. To provide $0.40 in
change, a greedy solution would start with a quarter ($0.25) and a dime ($0.10).
Unfortunately, there are no nickels, so the coin machine then outputs five pennies
(5 x $0.01) for a total of seven coins. The optimal solution in this case is to use four
dimes instead (4 x $0.10). As a result, the greedy algorithm provides a particular
solution, but not a good (optimal) solution in this case. The change-making prob-
lem receives considerable attention because it’s so hard to solve. You can find addi-
tional information in discussions such as “Combinatorics of the Change-Making
Problem,” by Anna Adamaszeka and Michal Adamaszek (see http://www.
sciencedirect.com/science/article/pii/S0195669809001292 for details).

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://www.sciencedirect.com/science/article/pii/S0195669809001292
http://www.sciencedirect.com/science/article/pii/S0195669809001292
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Computing Costs and Following Heuristics

Even when you find a good solution, one that is both efficient and effective, you
still need to know precisely what the solution costs. You may find that the cost of
using a particular solution is still too high, even when everything else is consid-
ered. Perhaps the answer comes almost, but not quite, on time or it uses too many
computing resources. The search for a good solution involves creating an envi-
ronment in which you can fully test the algorithm, the states it creates, the opera-
tors it uses to change those states, and the time required to derive a solution.

Often, you find that a heuristic approach, one that relies on self-discovery and pro-
duces sufficiently useful results (not necessarily optimal, but good enough) is the
method you actually need to solve a problem. Getting the algorithm to perform
some of the required work for you saves time and effort because you can create
algorithms that see patterns better than humans do. Consequently, self-discovery
is the process of allowing the algorithm to show you a potentially useful path to a
solution (but you must still count on human intuition and understanding to know
whether the solution is the right one). The following sections describe techniques
you can use to compute the cost of an algorithm using heuristics as a method of
discovering the actual usefulness of any given solution.

Representing the problem as a space

A problem space is an environment in which a search for a solution takes place.
A set of states and the operators used to change those states represent the prob-
lem space. For example, consider a tile game that has eight tiles in a 3-x-3 frame.
Each tile shows one part of a picture, and the tiles start in some random order so
that the picture is scrambled. The goal is to move one tile at a time to place all the
tiles in the right order and reveal the picture. You can see an example of this sort
of puzzle at http://mypuzzle.org/sliding.

The combination of the start state, the randomized tiles, and the goal state — the
tiles in a particular order — is the problem instance. You could represent the puzzle
graphically using a problem space graph. Each node of the problem space graph
presents a state (the eight tiles in a particular position). The edges represent
operations, such as to move tile number eight up. When you move tile eight up,
the picture changes — it moves to another state.

Winning the game by moving from the start state to the goal state isn’t the only
consideration. To solve the game efficiently, you need to perform the task in the
least number of moves possible, which means using the smallest number of opera-
tors. The minimum number of moves used to solve the puzzle is the problem depth.

CHAPTER 2 Considering Algorithm Design 33

http://mypuzzle.org/sliding

You must consider several factors when representing a problem as a space. For
example, you must consider the maximum number of nodes that will fit in mem-
ory, which represents the space complexity. When you can’t fit all the nodes in
memory at one time, the computer must store some nodes in other locations, such
as the hard drive, which can slow the algorithm considerably. To determine
whether the nodes will fit in memory, you must consider the time complexity,
which is the maximum number of nodes created to solve the problem. In addition,
it’s important to consider the branching factor, which is the average number of
nodes created in the problem space graph to solve a problem.

Going random and being blessed by luck

Solving a search problem using brute-force techniques (described in “Avoiding
brute-force techniques,” earlier in this chapter) is possible. The advantage of this
approach is that you don’t need any domain-specific knowledge to use one of
these algorithms. A brute-force algorithm tends to use the simplest possible
approach to solving the problem. The disadvantage is that a brute-force approach
works well only for a small number of nodes. Here are some of the common brute-
force search algorithms:

¥ Breadth-first search: This technique begins at the root node, explores each of
the child nodes first, and only then moves down to the next level. It progresses
level by level until it finds a solution. The disadvantage of this algorithm is that
it must store every node in memory, which means that it uses a considerable
amount of memory for a large number of nodes. This technique can check for
duplicate nodes, which saves time, and it always comes up with a solution.

3 Depth-first search: This technique begins at the root node and explores a set
of connected child nodes until it reaches a leaf node. It progresses branch by
branch until it finds a solution. The disadvantage of this algorithm is that it can't
check for duplicate nodes, which means that it might traverse the same node
paths more than once. In fact, this algorithm may not find a solution at all,
which means that you must define a cutoff point to keep the algorithm from
searching infinitely. An advantage of this approach is that it's memory efficient.

¥ Bidirectional search: This technique searches simultaneously from the root
node and the goal node until the two search paths meet in the middle. An
advantage of this approach is that it's time efficient because it finds the
solution faster than many other brute-force solutions. In addition, it uses
memory more efficiently than other approaches and always finds a solution.
The main disadvantage is complexity of implementation, translating into a
longer development cycle.

34 PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Using a heuristic and a cost function

For some people, the word heuristic just sounds complicated. It would be just as
easy to say that the algorithm makes an educated guess and then tries again when
it fails. Unlike brute-force methods, heuristic algorithms learn. They also use cost
functions to make better choices. Consequently, heuristic algorithms are more
complex, but they have a distinct advantage in solving complex problems. As with
brute-force algorithms, there are many heuristic algorithms and each comes with
its own set of advantages, disadvantages, and special requirements. The following
list describes a few of the most common heuristic algorithms:

3 Pure heuristic search: The algorithm expands nodes in order of their cost. It
maintains two lists. The closed list contains the nodes it has already explored;
the open list contains the nodes it must yet explore. In each iteration, the
algorithm expands the node with the lowest possible cost. All its child nodes
are placed in the closed list and the individual child node costs are calculated.
The algorithm sends the child nodes with a low cost back to the open list and
deletes the child nodes with a high cost. Consequently, the algorithm per-
forms an intelligent, cost-based search for the solution.

¥ A *search: The algorithm tracks the cost of nodes as it explores them using
the equation: f(n) = g(n) + h(n), where

n is the node identifier.

g(n) is the cost of reaching the node so far.

h(n) is the estimated cost to reach the goal from the node.
f(n) is the estimated cost of the path from n to the goal.

The idea is to search the most promising paths first and avoid expensive
paths.

¥ Greedy best-first search: The algorithm always chooses the path that is
closest to the goal using the equation: f(n) = h(n). This particular algorithm can
find solutions quite quickly, but it can also get stuck in loops, so many people
don't consider it an optimal approach to finding a solution.

Evaluating Algorithms

Gaining insights into precisely how algorithms work is important because other-
wise you can’t determine whether an algorithm actually performs in the way you
need it to. In addition, without good measurements, you can’t perform accurate
comparisons to know whether you really do need to discover a new method of
solving a problem when an older solution works too slowly or uses too many

CHAPTER 2 Considering Algorithm Design 35

36

resources. The reality is that you’ll use algorithms made by others most of the
time, potentially devising a few of your own. Knowing the basis to use to compare
different solutions and deciding between them is an essential skill when dealing
with algorithms.

The issue of efficiency has been part of discovering and designing new algorithms
since the concept of algorithms first came into being, which is why you see so
many different algorithms competing to solve the same problem (sometimes a
real embarrassment of riches). The concept of measuring the size of the functions
within an algorithm and analyzing how the algorithm works isn’t new; both Ada
Lovelace and Charles Babbage considered the problems of algorithm efficiency in
reference to computers as early as 1843 (see a short history of the Babbage engine
at http://www.computerhistory.org/babbage/adalovelace/).

Donald Knuth (http://www-cs-faculty.stanford.edu/~uno/), computer scien-
tist, mathematician, professor emeritus at Stanford University, and author of the
milestone, multivolume book The Art of Computer Programming (Addison-Wesley),
devoted much of his research and studies to comparing algorithms. He strived to
formalize how to estimate the resource needs of algorithms in a mathematical
way and to allow a correct comparison between alternative solutions. He coined
the term analysis of algorithms, which is the branch of computer science devoted to
understanding how algorithms work in a formal way. The analysis measures
resources required in terms of the number of operations an algorithm requires to
reach a solution or by its occupied space (such as the storage an algorithm requires
in computer memory).

Analysis of algorithms requires some mathematical understanding and some
computations, but it’s extremely beneficial in your journey to discover, appreci-
ate, and effectively use algorithms. This topic is considerably more abstract than
other topics in this book. To make the discussion less theoretical, later chapters
present more practicalities of such measurement by examining algorithms
together in detail. The following sections provide you with the basics.

Simulating using abstract machines

The more operations an algorithm requires, the more complex it is. Complexity is
a measure of algorithm efficiency in terms of time usage because each operation
takes some time. Given the same problem, complex algorithms are generally less
favorable than simple algorithms because complex algorithms require more time.
Think about those times when speed of execution makes the difference, such as in
the medical or financial sector, or when flying on automatic pilot on an airplane
or space rocket. Measuring algorithm complexity is a challenging task, though a

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://www.computerhistory.org/babbage/adalovelace/
http://www-cs-faculty.stanford.edu/~uno/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

REMEMBER

necessary one if you want to employ the right solution. The first measurement
technique uses abstract machines like the Random Access Machine (RAM).

RAM also stands for Random-Access Memory, which is the internal memory that
your computer uses when running programs. Even though it uses the same acro-
nym, a Random-Access Machine is something completely different.

Abstract machines aren’t real computers, but theoretical ones, computers that are
imagined in their functioning. You use abstract machines to consider how well an
algorithm would work on a computer without testing it on the real thing, yet
bound by the type of hardware you’d use. A RAM computer performs basic arith-
metic operations and interacts with information in memory, that’s all. Every time
a RAM computer does anything, it takes a time step (a time unit). When you eval-
uate an algorithm in a RAM simulation, you count time steps using the following
procedure:

1. counteach simple operation (arithmetic ones) as a time step.

2. Break complex operations into simple arithmetic operations and count time
steps as defined in Step 1.

3. Count every data access from memory as one time step.

To perform this accounting, you write a pseudocode version of your algorithm (as
mentioned in Chapter 1) and perform these steps using paper and pencil. In the
end, it’s a simple approach based on a basic idea of how computers work, a useful
approximation that you can use to compare solutions regardless of the power and
speed of your hardware or the programming language you use.

Using a simulation is different from running the algorithm on a computer because
you use a standard and predefined input. Real computer measurements require
that you run the code and verify the time required to run it. Running code on a
computer is actually a benchmark, another form of efficiency measurement, in
which you also account for the application environment (such as the type of hard-
ware used and the software implementation). A benchmark is useful but lacks
generalization. Consider, for instance, how newer hardware can quickly execute
an algorithm that took ages on your previous computer.

Getting even more abstract

Measuring a series of steps devised to achieve a solution to a problem poses quite
a few challenges. The previous section discusses counting time steps (number of
operations), but sometimes you also need to compute space (such as the memory
an algorithm consumes). You consider space when your problem is greedy for

CHAPTER 2 Considering Algorithm Design 37

38

resources. Depending on the problem, you may consider an algorithm better when
it works efficiently with regard to one of these resource consumption aspects:

3 Running time

3 Computer memory requirements
¥ Hard-disk usage

3 Power consumption

¥ Data-transmission speed in a network

Some of these aspects relate to others in an inverse manner, so if, for instance,
you want speedier execution time, you can increase memory or power consump-
tion to get it. Not only can you have different efficiency configurations when run-
ning an algorithm, you can also change the hardware characteristics and software
implementation to accomplish your goals. In terms of hardware, using a super-
computer or a general-purpose computer does matter, and the software, or lan-
guage used to write the algorithm, is definitely a game changer. In addition, the
quantity and kind of data you feed the algorithm could result in better or worse
performance measurements.

RAM simulations count time because when you can employ a solution in so many
environments and its resource usage depends on so many factors, you have to find
a way to simplify comparisons so that they become standard. Otherwise, you can’t
compare possible alternatives. The solution is, as so often happens with many
other problems, to use a single measure and say that one size fits all. In this case,
the measure is time, which you make equal to the number of operations, that is,
the complexity of the algorithm.

A RAM simulation places the algorithm in a situation that’s both language and
machine agnostic (it’s independent of programming language and computer type).
However, explaining how a RAM simulation works to others requires quite an
effort. The analysis of algorithms proposes to use the number of operations you
get from a RAM simulation and turn them into a mathematical function expressing
how your algorithm behaves in terms of time, which is a quantification of the steps
or operations required when the number of data inputs grows. For instance, if your
algorithm sorts objects, you can express complexity using a function that reports
how many operations it needs depending on the number of objects it receives.

Working with functions

A function in mathematics is simply a way to map some inputs to a response.
Expressed in a different way, a function is a transformation (based on math

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

operations) that transforms (maps) your input to an answer. For certain values of
input (usually denoted by the letters x or n), you have a corresponding answer
using the math that defines the function. For instance, a function like f(n) = 2n
tells you that when your input is a number n, your answer is the number n multi-
plied by 2.

Using the size of the input does make sense given that this is a time-critical age
and people’s lives are crammed with a growing quantity of data. Making every-
thing a mathematical function is a little less intuitive, but a function describing
how an algorithm relates its solution to the quantity of data it receives is some-
thing you can analyze without specific hardware or software support. It’s also
easy to compare with other solutions, given the size of your problem. Analysis of
algorithms is really a mind-blowing concept because it reduces a complex series
of steps into a mathematical formula.

Moreover, most of the time, an analysis of algorithms isn’t even interested in
defining the function exactly. What you really want to do is compare a target
function with another function. These comparison functions appear within a set
of proposed functions that perform poorly when contrasted to the target algo-
rithm. In this way, you don’t have to plug numbers into functions of greater or
lesser complexity; instead, you deal with simple, premade, and well-known func-
tions. It may sound rough, but it’s more effective and is similar to classifying the
performance of algorithms into categories, rather than obtaining an exact perfor-
mance measurement.

The set of generalized functions is called Big O notation, and in this book, you
often encounter this small set of functions (put into parentheses and preceded by
a capital 0) used to represent the performance of algorithms. Figure 2-1 shows the
analysis of an algorithm. A Cartesian coordinate system can represent its function
as measured by RAM simulation, where the abscissa (the x coordinate) is the size
of the input and the ordinate (the y coordinate) is its resulting number of opera-
tions. You can see three curves represented. Input size matters. However, quality
also matters (for instance, when ordering problems, it’s faster to order an input
which is already almost ordered). Consequently, the analysis shows a worst case,
f,(n), an average case, f,(n), and a best case, f,(n). Even though the average case
might give you a general idea, what you really care about is the worst case, because
problems may arise when your algorithm struggles to reach a solution. The Big O
function is the one that, after a certain n, value (the threshold for considering an
input big), always results in a larger number of operations given the same input
than the worst-case function f,. Thus, the Big O function is even more pessimistic
than the one representing your algorithm, so that no matter the quality of input,
you can be sure that things cannot get worse than that.

CHAPTER 2 Considering Algorithm Design 39

Number of operations

FIGURE 2-1:
Complexity of an
algorithm in case
of best, average,

and worst
input case.

10000

Q000

8000
Worst
7000

6000
— Average
4000
3000
2000

1000
0 200 400 600 800 1000

Input size

Many possible functions can result in worse results, but the choice of functions
offered by the Big O notation that you can use is restricted because its purpose is
to simplify complexity measurement by proposing a standard. Consequently, this
section contains just the few functions that are part of the Big O notation. The fol-
lowing list describes them in growing order of complexity:

»

»

»

»

Constant complexity O(1): The same time, no matter how much input you
provide. In the end, it is a constant number of operations, no matter how long
the input data is. This level of complexity is quite rare in practice.

Logarithmic complexity O(log n): The number of operations grows at a
slower rate than the input, making the algorithm less efficient with small
inputs and more efficient with larger ones. A typical algorithm of this class is
the binary search, as described in Chapter 7 on arranging and searching data.

Linear complexity O(n): Operations grow with the inputin a 1:1 ratio. A
typical algorithm is iteration, which is when you scan input once and apply an
operation to each element of it. Chapter 5 discusses iterations.

Linearithmic complexity O(n log n): Complexity is a mix between logarith-
mic and linear complexity. It is typical of some smart algorithms used to order
data, such as Mergesort, Heapsort, and Quicksort. Chapter 7 tells you about
most of them.

40 PART 1 Getting Started

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

»

»

»

»

Quadratic complexity O(n?): Operations grow as a square of the number of
inputs. When you have one iteration inside another iteration (nested itera-
tions, in computer science), you have quadratic complexity. For instance, you
have a list of names and, in order to find the most similar ones, you compare
each name against all the other names. Some less efficient ordering algo-

rithms present such complexity: bubble sort, selection sort, and insertion sort.

This level of complexity means that your algorithms may run for hours or
even days before reaching a solution.

Cubic complexity O(n%): Operations grow even faster than quadratic
complexity because now you have multiple nested iterations. When an
algorithm has this order of complexity and you need to process a modest
amount of data (100,000 elements), your algorithm may run for years. When
you have a number of operations that is a power of the input, it is common to
refer to the algorithm as running in polynomial time.

Exponential complexity O(2"): The algorithm takes twice the number of
previous operations for every new element added. When an algorithm has
this complexity, even small problems may take forever. Many algorithms
doing exhaustive searches have exponential complexity. However, the classic
example for this level of complexity is the calculation of Fibonacci numbers
(which, being a recursive algorithm, is dealt with in Chapter 5).

Factorial complexity O(n!): A real nightmare of complexity because of the
large number of possible combinations between the elements. Just imagine:
If your input is 100 objects and an operation on your computer takes 10
seconds (a reasonable speed for every computer, nowadays), you will need
about 10'%° years to complete the task successfully (an impossible amount of
time since the age of the universe is estimated as being 104 years). A famous
factorial complexity problem is the traveling salesman problem, in which a
salesman has to find the shortest route for visiting many cities and coming
back to the starting city (presented in Chapter 18).

CHAPTER 2 Considering Algorithm Design

41

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Using Python to discover how
algorithms work

» Considering the various Python
distributions

» Performing a Python installation on
Linux

» Performing a Python installation on
0Ss X

» Performing a Python installation on
Windows

» Obtaining and installing the datasets
used in this book

Chapter 3

Using Python to Work
with Algorithms

ou have many good choices when it comes to using computer assistance to

discover the wonders of algorithms. For example, apart from Python, many

people rely on MATLAB and many others use R. In fact, some people use all
three and then compare the sorts of outputs they get (see one such comparison at
https://www.r-bloggers.com/evaluating-optimization-algorithms—-in-
matlab-python-and-r/). If you just had the three choices, you’d still need to
think about them for a while and might choose to learn more than one language,
but you actually have more than three choices, and this book can’t begin to cover
them all. If you get deep into the world of algorithms, you discover that you can
use all programming languages to write algorithms and that some are appreciated
because they boil everything down to simple operations, such as the RAM simula-
tion described in Chapter 2. For instance, Donald Knuth, winner of the Turing
Award, wrote examples in Assembly language in his book The Art of Computer
Programming (Addison-Wesley). Assembly language is a programming language

CHAPTER 3 Using Python to Work with Algorithms 43

https://www.r-bloggers.com/evaluating-optimization-algorithms-in-matlab-python-and-r/
https://www.r-bloggers.com/evaluating-optimization-algorithms-in-matlab-python-and-r/

L4

that resembles machine code, the language used natively by computers (but not
understandable by most humans).

This book uses Python for a number of good reasons, including the community
support it enjoys and the fact that it’s full featured, yet easy to learn. Python is
also a verbose language, resembling how a human creates instructions rather than
how a computer interprets them. The first section of this chapter fills in the details
of why this book uses Python for the examples, but also tells you why other
options are useful and why you may need to consider them as your journey
continues.

When you speak a human language, you add nuances of meaning by employing
specific word combinations that others in your community understand. The use of
nuanced meaning comes naturally and represents a dialect. In some cases, dia-
lects also form because one group wants to demonstrate a difference with another
group. For example, Noah Webster wrote and published A Grammatical Institute of
the English Language, in part to remove the influence of the British aristocracy
from the American public (see http://connecticuthistory.org/noah-webster—
and-the-dream-of-a-common-language/ for details). Likewise, computer lan-
guages often come with flavors, and vendors purposely add extensions that make
their product unique to provide a reason to buy their product over another
offering.

The second section of the chapter introduces you to various Python distributions,
each of which provides a Python dialect. This book uses Analytics Anaconda, which
is the product you should use to obtain the best results from your learning experi-
ence. Using another product, essentially another dialect, can cause problems in
making the examples work — the same sort of thing that happens sometimes
when someone who speaks British English talks to someone who speaks American
English. However, knowing about other distributions can be helpful when you
need to obtain access to features that Anaconda may not provide.

The next three sections of this chapter help you install Anaconda on your plat-
form. The examples in this book are tested on the Linux, Mac OS X, and Windows
platforms. They may also work with other platforms, but the examples aren’t
tested on these platforms, so you have no guarantee that they’ll work. By install-
ing Anaconda using the procedures found in this chapter, you reduce the chance
of getting an installation that won’t work with the example code. To use the
examples in this book, you must install Anaconda 4.2.0 with support for Python 3.5.
Other versions of Anaconda and Python may not work with the example code
because, as with human language dialects, they could misunderstand the instruc-
tions that the code provides.

Algorithms work with data in specific ways. To see particular output from an
algorithm, you need consistent data. Fortunately, the Python community is busy

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://connecticuthistory.org/noah-webster-and-the-dream-of-a-common-language/
http://connecticuthistory.org/noah-webster-and-the-dream-of-a-common-language/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

creating datasets that anyone can use for testing purposes. This allows the com-
munity to repeat results that others get without having to download custom data-
sets from an unknown source. The final section of this chapter helps you get and
install the datasets needed for the examples.

Considering the Benefits of Python

REMEMBER

To work with algorithms on a computer, you need some means of communicating
with the computer. If this were Star Trek, you could probably just tell the computer
what you want and it would dutifully perform the task for you. In fact, Scotty seems
quite confused about the lack of a voice computer interface in Star Trek IV (see
http://www.davidalison.com/2008/07/keyboard-vs-mouse.html for details).
The point is that you still need to use the mouse and keyboard, along with a special
language, to communicate your ideas to the computer because the computer isn’t
going to make an effort to communicate with you. Python is one of a number of
languages that is especially adept at making it easy for nondevelopers to commu-
nicate ideas to the computer, but it isn’t the only choice. The following paragraphs
help you understand why this book uses Python and what your other choices are.

Understanding why this book uses Python

Every computer language available today translates algorithms into a form that
the computer can process. In fact, languages like ALGOL (ALGOrithmic Language)
and FORTRAN (FORmula TRANslation) make this focus clear. Remember the defi-
nition of an algorithm from Chapter 1 as being a sequence of steps used to solve a
problem. The method used to perform this translation differs by language, and the
techniques used by some languages are quite arcane, requiring specialized knowl-
edge even to make an attempt.

Computers speak only one language, machine code (the 0s and 1s that a computer
interprets to perform tasks), which is so incredibly hard for humans to speak that
early developers created a huge array of alternatives. Computer languages exist to
make human communication with computers easier. Consequently, if you find
yourself struggling to make anything work, perhaps you have the wrong lan-
guage. It’s always best to have more than one language at your fingertips so that
you can perform computer communications with ease. Python happens to be one
of the languages that works exceptionally well for people who work in disciplines
outside application development.

Python is the vision of a single person, Guido van Rossum (see his home page at
https://gvanrossum.github.io/). You might be surprised to learn that Python

CHAPTER 3 Using Python to Work with Algorithms 45

http://www.davidalison.com/2008/07/keyboard-vs-mouse.html
https://gvanrossum.github.io/

46

LD,
TECHNICAL
STUFF

has been around for a long time — Guido started the language in December 1989
as a replacement for the ABC language. Not much information is available as to the
precise goals for Python, but it does retain ABC’s capability to create applications
using less code. However, it far exceeds the capability of ABC to create applica-
tions of all types, and in contrast to ABC, boasts four programming styles. In
short, Guido took ABC as a starting point, found it limited, and created a new
language without those limitations. It’s an example of creating a new language
that really is better than its predecessor.

Python has gone through a number of iterations and currently has two develop-
ment paths. The 2.x path is backward compatible with previous versions of Python;
the 3.x path isn’t. The compatibility issue is one that figures into how you use
Python to perform algorithm-related tasks because at least some of the packages
won’t work with 3.x. In addition, some versions use different licensing because
Guido was working at various companies during Python’s development. You can
see a listing of the versions and their respective licenses at https: //docs . python.
org/3/license.html. The Python Software Foundation (PSF) owns all current
versions of Python, so unless you use an older version, you really don’t need to
worry about the licensing issue.

Guido actually started Python as a skunkworks project (a project developed by a small
and loosely structured group of people). The core concept was to create Python as
quickly as possible, yet create a language that is flexible, runs on any platform, and
provides significant potential for extension. Python provides all these features and
many more. Of course, there are always bumps in the road, such as figuring out just
how much of the underlying system to expose. You can read more about the Python
design philosophy at http://python-history.blogspot.com/2009/01/pythons—
design-philosophy.html. The history of Python at http://python-history.
blogspot.com/2009/01/introduction-and-overview.html also provides some
useful information.

The original development (or design) goals for Python don’t quite match what has
happened to the language since that time. Guido originally intended Python as a
second language for developers who needed to create one-off code but who
couldn’t quite achieve their goals using a scripting language. The original target
audience for Python was the C developer. You can read about these original goals
in the interview at http://www.artima.com/intv/pyscale.html.

You can find a number of applications written in Python today, so the idea of using
it solely for scripting didn’t come to fruition. In fact, you can find listings of
Python applications at https://www.python.org/about/apps/ and https://
www . python.org/about/success/.

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://docs.python.org/3/license.html
https://docs.python.org/3/license.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://www.artima.com/intv/pyscale.html
https://www.python.org/about/apps/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Naturally, with all these success stories to go on, people are enthusiastic about
adding to Python. You can find lists of Python Enhancement Proposals (PEPs) at
http://legacy.python.org/dev/peps/. These PEPs may or may not see the light
of day, but they prove that Python is a living, growing language that will continue
to provide features that developers truly need to create great applications of all

types.

Working with MATLAB

Python has advantages over many other languages by offering multiple coding
styles, fantastic flexibility, and great extensibility, but it’s still a programming
language. If you honestly don’t want to use a programming language, you do
have other options, such as MATLAB (https://www.mathworks.com/products/
matlab/), which focuses more on algorithms. MATLARB is still a scripting language
of a sort, and to perform any significant tasks with it, you still need to know a
little about coding, but not as much as with Python.

One of the major issues with using MATLAB is the price you pay. Unlike Python,
MATLAB requires a monetary investment on your part (see https://www.
mathworks.com/pricing-licensing/ for licensing costs). The environment is
indeed easier to use, but as with most things, there is no free lunch, and you must
consider the cost differential as part of determining which product to use.

Many people are curious about MATLAB, that is, its strengths and weaknesses
when compared to Python. This book doesn’t have room to provide a full compari-
son, but you can find a great overview at http://www.pyzo.org/python_vs_
matlab.html. In addition, you can call Python packages from MATLAB using the
techniques found at https://www.mathworks.com/help/matlab/call-python-
libraries.html. In fact, MATLAB also works with the following:

¥ MEX (https://www.mathworks.com/help/matlab/call-mex—-file-
functions.html)

¥ C(https://www.mathworks.com/help/matlab/using—c-shared-library—
functions-in-matlab-.html)

¥ Java (https://www.mathworks.com/help/matlab/using-java-libraries—
in-matlab.html)

¥ .NET (https://www.mathworks.com/help/matlab/using-net-libraries-
in-matlab.html)

¥ COM (https://www.mathworks.com/help/matlab/using—com-objects—
in-matlab.html)

CHAPTER 3 Using Python to Work with Algorithms 47

http://legacy.python.org/dev/peps/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/pricing-licensing/
https://www.mathworks.com/pricing-licensing/
http://www.pyzo.org/python_vs_matlab.html
http://www.pyzo.org/python_vs_matlab.html
https://www.mathworks.com/help/matlab/call-python-libraries.html
https://www.mathworks.com/help/matlab/call-python-libraries.html
https://www.mathworks.com/help/matlab/call-mex-file-functions.html
https://www.mathworks.com/help/matlab/call-mex-file-functions.html
https://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
https://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
https://www.mathworks.com/help/matlab/using-java-libraries-in-matlab.html
https://www.mathworks.com/help/matlab/using-java-libraries-in-matlab.html
https://www.mathworks.com/help/matlab/using-net-libraries-in-matlab.html
https://www.mathworks.com/help/matlab/using-net-libraries-in-matlab.html
https://www.mathworks.com/help/matlab/using-com-objects-in-matlab.html
https://www.mathworks.com/help/matlab/using-com-objects-in-matlab.html

Therefore, you don’t necessarily have to choose between MATLAB and Python (or
other language), but the more Python features you use, the easier it becomes to
simply work with Python and skip MATLAB. You can discover more about
MATLAB in MATLAB For Dummies, by Jim Sizemore and John Paul Mueller (Wiley).

Considering other algorithm
testing environments

A third major contender for algorithm-related work is R. The R programming
language, like Python, is free of charge. It also supports a large number of packages
and offers great flexibility. Some of the programming constructs are different,
however, and some people find R harder to use than Python. Most people view R
as the winner when it comes to performing statistics, but they see the general-
purpose nature of Python as having major benefits (see the articles at https://
www .datacamp.com/community/tutorials/r-or-python-for-data-analysis
and http://www.kdnuggets.com/2015/05/r-vs—-python-data-science.html).
The stronger community support for Python is also a major advantage.

As previously mentioned, you can use any computer programming language to
perform algorithm-related work, but most languages have a specific purpose in
mind. For example, you can perform algorithm-related tasks using a language
such as Structured Query Language (SQL), but this language focuses on data man-
agement, so some algorithm-related tasks might become convoluted and difficult
to perform. A significant lack in SQL is the ability to plot data with ease and to
perform some of the translations and transformations that algorithm-specific
work requires. In short, you need to consider what you plan to do when choosing
a language. This book uses Python because it truly is the best overall language to
perform the tasks at hand, but it’s important to realize that you may need another
language at some point.

Looking at the Python Distributions

48

You can quite possibly obtain a generic copy of Python and add all the packages
required to work with algorithms to it. The process can be difficult because you
need to ensure that you have all the required packages in the correct versions to
guarantee success. In addition, you need to perform the configuration required to
make sure that the packages are accessible when you need them. Fortunately,
going through the required work is not necessary because numerous Python prod-
ucts that work well with algorithms are available for you to use. These products
provide everything needed to get started with algorithm-related projects.

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir g™

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

©

REMEMBER

WARNING

TIP

You can use any of the packages mentioned in the following sections to work with
the examples in this book. However, the book’s source code and downloadable
source code rely on Continuum Analytics Anaconda 4.2.0 because this particular
package works on every platform this book supports: Linux, Mac OS X, and Win-
dows. The book doesn’t mention a specific package in the chapters that follow, but
any screenshots reflect how things look when using Anaconda on Windows. You
may need to tweak the code to use another package, and the screens will look dif-
ferent if you use Anaconda on some other platform.

Windows 10 presents some serious installation issues when working with Python.
You can read about these issues on my (John’s) blog at http://blog. john
muellerbooks.com/2015/10/30/python-and-windows-10/. Given that so many
readers of my other Python books have sent feedback saying that Windows 10
doesn’t provide a good environment, I can’t recommend Windows 10 as a Python
platform for this book. If you’re working with Windows 10, simply be aware that
your road to a Python installation will be a rocky one.

Obtaining Analytics Anaconda

The basic Anaconda package is a free download that you obtain at https://store.
continuum.io/cshop/anaconda/. Simply click Download Anaconda to obtain
access to the free product. You do need to provide an email address to get a copy
of Anaconda. After you provide your email address, you go to another page, where
you can choose your platform and the installer for that platform. Anaconda sup-
ports the following platforms:

¥ Windows 32-bit and 64-bit (the installer may offer you only the 64-bit or 32-bit
version, depending on which version of Windows it detects)

¥ Linux 32-bit and 64-bit
¥ Mac OS X 64-bit

Because package support for Python 3.5 has gotten better than previous 3.x ver-
sions, you see both Python 3.x and 2.x equally supported on the Analytics site. This
book uses Python 3.5 because the package support is now substantial enough and
stable enough to support all the programming examples, and because Python 3.x
represents the future direction of Python.

You can obtain Anaconda with older versions of Python. If you want to use an
older version of Python, click the installer archive link near the bottom of the
page. You should use an older version of Python only when you have a pressing
need to do so.

CHAPTER 3 Using Python to Work with Algorithms 49

http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/

50

The Miniconda installer can potentially save time by limiting the number of fea-
tures you install. However, trying to figure out precisely which packages you do
need is an error-prone and time-consuming process. In general, you want to per-
form a full installation to ensure that you have everything needed for your proj-
ects. Even a full install doesn’t require much time or effort to download and install
on most systems.

The free product is all you need for this book. However, when you look on the site,
you see that many other add-on products are available. These products can help
you create robust applications. For example, when you add Accelerate to the mix,
you obtain the capability to perform multicore and GPU-enabled operations. The
use of these add-on products is outside the scope of this book, but the Anaconda
site provides details on using them.

Considering Enthought Canopy Express

Enthought Canopy Express is a free product for producing both technical and sci-
entific applications using Python. You can obtain it at https://www.enthought.
com/canopy-express/. Click Download Free on the main page to see a listing of
the versions that you can download. Only Canopy Express is free; the full Canopy
product comes at a cost. However, you can use Canopy Express to work with the
examples in this book. Canopy Express supports the following platforms:

¥ Windows 32-bit and 64-bit
¥ Linux 32-bit and 64-bit
¥ Mac OS X 32-bit and 64-bit

Choose the platform and version you want to download. When you click Download
Canopy Express, you see an optional form for providing information about your-
self. The download starts automatically, even if you don’t provide personal infor-
mation to the company.

One of the advantages of Canopy Express is that Enthought is heavily involved in
providing support for both students and teachers. People also can take classes,
including online classes, that teach the use of Canopy Express in various ways (see
https://training.enthought.com/courses).

Considering pythonxy

The pythonxy Integrated Development Environment (IDE) is a community project
hosted on Google at http://python-xy.github.io/. It’s a Windows-only prod-
uct, so you can’t easily use it for cross-platform needs. (In fact, it supports only

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://www.enthought.com/canopy-express/
https://www.enthought.com/canopy-express/
https://training.enthought.com/courses
http://python-xy.github.io/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Windows Vista, Windows 7, and Windows 8.) However, it does come with a full set
of packages, and you can easily use it for this book if you want.

Because pythonxy uses the GNU General Public License (GPL) v3 (seehttp://www.
gnu.org/licenses/gpl.html), you have no add-ons, training, or other paid fea-
tures to worry about. No one will come calling at your door hoping to sell you
something. In addition, you have access to all the source code for pythonxy, so you
can make modifications if you want.

Considering WinPython

The name tells you that WinPython is a Windows-only product that you can find
at http://winpython.sourceforge.net/. This product is actually a spin-off of
pythonxy and isn’t meant to replace it. Quite the contrary: WinPython is simply a
more flexible way to work with pythonxy. You can read about the motivation for
creating WinPython at http: //sourceforge.net/p/winpython/wiki/Roadmap/.

The bottom line for this product is that you gain flexibility at the cost of friendli-
ness and a little platform integration. However, for developers who need to main-
tain multiple versions of an IDE, WinPython may make a significant difference.
When using WinPython with this book, make sure to pay particular attention to
configuration issues or you’ll find that even the downloadable code has little
chance of working.

Installing Python on Linux

You use the command line to install Anaconda on Linux — you’re given no graph-
ical installation option. Before you can perform the install, you must download a
copy of the Linux software from the Continuum Analytics site. You can find the
required download information in the “Obtaining Analytics Anaconda” section,
earlier in this chapter. The following procedure should work fine on any Linux
system, whether you use the 32-bit or 64-bit version of Anaconda:

1. Open a copy of Terminal.
The Terminal window appears.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.2.0-

Linux-x86.sh for 32-bit systems and Anaconda3-4.2.0-Linux-x86_64.sh
for 64-bit systems. The version number is embedded as part of the filename.
In this case, the filename refers to version 4.2.0, which is the version used for

CHAPTER 3 Using Python to Work with Algorithms 51

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://winpython.sourceforge.net/
http://sourceforge.net/p/winpython/wiki/Roadmap/

this book. If you use some other version, you may experience problems with
the source code and need to make adjustments when working with it.

3. Type bash Anaconda3-4.2.0-Linux-x86.sh (for the 32-bit version) or bash
Anaconda3-4.2.0-Linux-x86_64.sh (for the 64-bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms for
using Anaconda.

4. Readthe licensing agreement and accept the terms using the method
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book
assumes that you use the default location of ~/anaconda. If you choose some
other location, you may have to modify some procedures later in the book to
work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click
Next).

The application extraction process begins. After the extraction is complete, you
see a completion message.

6. Add the installation path to your PATH statement using the method
required for your version of Linux.

You're ready to begin using Anaconda.

Installing Python on MacOS

The Mac OS X installation comes in only one form: 64-bit. Before you can perform
the install, you must download a copy of the Mac software from the Continuum
Analytics site. You can find the required download information in the “Obtaining
Analytics Anaconda” section, earlier in this chapter.

The installation files come in two forms. The first depends on a graphical installer;
the second relies on the command line. The command-line version works much
like the Linux version described in the “Installing Python on Linux” section of
this chapter. The following steps help you install Anaconda 64-bit on a Mac sys-
tem using the graphical installer:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.2.0-
MacOSX-x86_64 . pkg. The version number is embedded as part of the
filename. In this case, the filename refers to version 4.2.0, which is the

52 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A\

WARNING

version used for this book. If you use some other version, you may experience
problems with the source code and need to make adjustments when working
with it.

Double-click the installation file.
An introduction dialog box appears.
Click Continue.

The wizard asks whether you want to review the Read Me materials. You can
read these materials later. For now, you can safely skip the information.

Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

Click | Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The destina-
tion controls whether the installation is for an individual user or a group.

You may see an error message stating that you can't install Anaconda on the
system. The error message occurs because of a bug in the installer and has
nothing to do with your system. To get rid of the error message, choose the
Install Only for Me option. You can't install Anaconda for a group of users on a
Mac system.

Click Continue.

The installer displays a dialog box containing options for changing the installa-
tion type. Click Change Install Location if you want to modify where Anaconda
is installed on your system. (The book assumes that you use the default path of
~/anaconda.) Click Customize if you want to modify how the installer works.

For example, you can choose not to add Anaconda to your PATH statement.
However, the book assumes that you have chosen the default install options,
and no good reason exists to change them unless you have another copy of
Python 3.5 installed somewhere else.

Click Install.

The installation begins. A progress bar tells you how the installation process
is progressing. When the installation is complete, you see a completion
dialog box.

Click Continue.

You're ready to begin using Anaconda.

CHAPTER 3 Using Python to Work with Algorithms 53

Installing Python on Windows

Anaconda comes with a graphical installation application for Windows, so getting
a good install means using a wizard, as you would for any other installation. Of
course, you need a copy of the installation file before you begin, and you can find
the required download information in the “Obtaining Analytics Anaconda” sec-
tion, earlier in this chapter. The following procedure should work fine on any
Windows system, whether you use the 32-bit or the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.2.0-
Windows-x86 . exe for 32-bit systems and Anaconda3-4.2.0-Windows—x86_64.
exe for 64-bit systems. The version number is embedded as part of the filename.
In this case, the filename refers to version 4.2.0, which is the version used for this
book. If you use some other version, you may experience problems with the
source code and need to make adjustments when working with it.

2. Double-click the installation file.

(You may see an Open File - Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see
an Anaconda 4.2.0 Setup dialog box similar to the one shown in Figure 3-1.
The exact dialog box that you see depends on which version of the Anaconda
installation program you download. If you have a 64-bit operating system,
using the 64-bit version of Anaconda is always best so that you obtain the best
possible performance. This first dialog box tells you when you have the 64-bit
version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4. Cclickl Agree if you agree to the licensing agreement.

You're asked what sort of installation type to perform, as shown in Figure 3-2.
In most cases, you want to install the product just for yourself. The exception
is if you have multiple people using your system and they all need access to
Anaconda.

5. choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3. The
book assumes that you use the default location. If you choose some other
location, you may have to modify some procedures later in the book to work
with your setup.

54 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 3-1:

The setup
process begins by
telling you
whether you have
the 64-bit version.

FIGURE 3-2:
Tell the wizard
how to install
Anaconda on
your system.

O Anaconda3 4.2.0 (64-bit) Setup (== ==

Welcome to Anaconda3 4.2.0
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
4.2.0 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.,

Click Next to continue.

CONTINUUM

[Next >] [Cancel

O Anaconda3 4.2.0 (64-bit) Setup (= = =

Select Installation Type

J ANACONDA Please select the type of installation you would like to perform for
Anaconda3 4.2.0 (64-bit).

Install for:

@ Just Me (recommended)

() All Users (requires admin privileges)

< Back " Next >] [Cancel

CHAPTER 3 Using Python to Work with Algorithms

O Anaconda3 4.2.0 (64-bit) Setup (== ==

Choose Install Location
_) ANACONDA Choose the folder in which to install Anaconda3 4.2.0 (64-bit).

Setup will install Anaconda3 4.2.0 (64-bit) in the following folder. To install in a different
folder, click Browse and select another folder. Click Next to continue.

Destination Folder

C:\Users\John\Anaconda3|

Space required: 1.8GB
Space available: 338.4GB

FIGURE 3-3:
Specify an
installation < Back " Next >][Cancel

location.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These options
are selected by default, and no good reason exists to change them in most
cases. You might need to change them if Anaconda won't provide your default
Python 3.5 (or Python 2.7) setup. However, the book assumes that you've set
up Anaconda using the default options.

7. Change the advanced installation options (if necessary) and then click
Install.

You see an Installing dialog box with a progress bar. The installation process
can take a few minutes, so get yourself a cup of coffee and read the comics
for a while. When the installation process is over, you see a Next button
enabled.

8. Cclick Next.
The wizard tells you that the installation is complete.
9. Cclick Finish.

You're ready to begin using Anaconda.

56 PART 1 Getting Started

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 3-4:
Configure the
advanced
installation
options.

O Anaconda3 4.2.0 (64-bit) Setup (=] ® ==

Advanced Installation Options
_) ANACONDA customize how Anaconda integrates with Windows

Advanced Options

[¥] Add Anaconda to my PATH environment variable

This ensures that PATH is set correctly when using Python, IPython,
conda, and any other program in the Anaconda distribution.

If unchecked, then you must use the Anaconda Command Prompt
(located in the Start Menu under "Anaconda (64-bit)").

[V|Register Anaconda as my default Python 3.5

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.5 on the system.

< Back][Install l [Cancel

A WORD ABOUT THE SCREENSHOTS

As you work your way through the book, you use an IDE of your choice to open the
Python and Jupyter Notebook files containing the book’s source code. Every screenshot
that contains IDE-specific information relies on Anaconda because Anaconda runs on all
three platforms supported by the book. The use of Anaconda doesn't imply that it's the
best IDE or that the authors are making any sort of recommendation for it; Anaconda
simply works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment, Jupyter
Notebook, is precisely the same across all three platforms, and you won't even see any
significant difference in the presentation. (Jupyter Notebook is an evolution of IPython,
so you may see online resources refer to IPython Notebook.) The differences that you
do see are minor, and you should ignore them as you work through the book. With this
in mind, the book does rely heavily on Windows 7 screenshots. When working on a
Linux, Mac OS X, or other Windows version platform, you should expect to see some
differences in presentation, but these differences shouldn't reduce your ability to work
with the examples.

CHAPTER 3 Using Python to Work with Algorithms

57

Downloading the Datasets
and Example Code

This book is about using Python to perform machine learning tasks. Of course, you
can spend all your time creating the example code from scratch, debugging it, and
only then discovering how it relates to machine learning, or you can take the easy
way and download the prewritten code from the Dummies site (see the Introduc-
tion of this book for details) so that you can get right to work. Likewise, creating
datasets large enough for algorithm learning purposes would take quite a while.
Fortunately, you can access standardized, precreated data sets quite easily by
using features provided in some of the data science packages (which also work
just fine for all sorts of purposes, including learning to work with algorithms).
The following sections help you download and use the example code and datasets
so that you can save time and get right to work with algorithm-specific tasks.

Using Jupyter Notebook

To make working with the relatively complex code in this book easier, you use
Jupyter Notebook. This interface lets you easily create Python notebook files that
can contain any number of examples, each of which can run individually. The
program runs in your browser, so which platform you use for development doesn’t
matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook

Most platforms provide an icon to access Jupyter Notebook. Just click this icon to
access Jupyter Notebook. For example, on a Windows system, you choose Start=> All
Programs=> Anaconda 3= Jupyter Notebook. Figure 3-5 shows how the interface
looks when viewed in a Firefox browser. The precise appearance on your system
depends on the browser you use and the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can use
these steps to access Jupyter Notebook:
1. Open a Command Prompt or Terminal Window on your system.
The window opens so that you can type commands.
2. Change directories to the \Anaconda3\Scripts directory on your machine.
Most systems let you use the CD command for this task.
3. Type python jupyter-notebook-script.py and press Enter.

The Jupyter Notebook page opens in your browser.

58 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

@ Home - Mozilla Firefox (o= ==
File Edit View History Bookmarks Tools Help

Home x

a 5 - localhost 8688/tree 29 ¥+ ® 4 @- & a =
jupyter
Files Running Clusters Conda =
Select items to perform actions on them. Upload | Mew~ 2
~ R

3 Corel PaintShop Pro
[Downloads
FIGURE 3-5:
Jupyter Notebook
provides an easy

3 IPython Notebooks

0O MATLAB

method to create [ML4D
machine learning [3 My Data Sources i
examples.

Stopping the Jupyter Notebook server

No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Jupyter Notebook. This window contains a server that makes
the application work. After you close the browser window when a session is com-
plete, select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository

The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You can
modify it, run individual examples within the folder, add new examples, and
simply interact with your code in a natural manner. The following sections get you
started with Notebook so that you can see how this whole repository concept works.

Defining the book’s folder

It pays to organize your files so that you can access them easier later. This book
keeps its files in the A4D (Algorithms For Dummies) folder. Use these steps within
Notebook to create a new folder.

CHAPTER 3 Using Python to Work with Algorithms 59

FIGURE 3-6:

New folders
appear with a
name of Untitled
Folder.

FIGURE 3-7:
Rename the
folder so that you
remember the
kinds of entries it
contains.

1 . Choose New > Folder.

Notebook creates a new folder named Untitled Folder, as shown in Figure 3-6.
The file appears in alphanumeric order, so you may not initially see it. You
must scroll down to the correct location.

@ Home - Mozilla Firefox (o= ==
File Edit View History Bookmarks Tools Help
j": Home x-\'\
B S - (€0 locahostaosaiest c +F ® 4 G- & @ =
= jupyter

El 3 Test Client Projects

m| o»

[Untitled Folder

]

N

Select the box next to the Untitled Folder entry.
3. Click Rename at the top of the page.

You see a Rename Directory dialog box like the one shown in Figure 3-7.

@ Home - Mozilla Firefox [= ===
File Edit Wiew History Bookmarks Tools Help
j'/: Home *—_\\

B S - (€)9]0 localhostpassirest c + ® 4 @8- 8 @ =

Rename directory

Enter a new directory name:

Untitled Folder

4, Type A4D and click OK.

Notebook changes the name of the folder for you.

5. click the new A4D entry in the list.

Notebook changes the location to the A4D folder in which you perform tasks
related to the exercises in this book.

60 PART 1 Getting Started

[www.konkurcomputer.ir] poyoispsis (F)
konkurcomputer.ir —Sgyg®™—

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 3-8:

A notebook
contains cells
that you use to
hold code.

Creating a new notebook

Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell. You can put other sorts of things in the file folder,
too, but you see how these things work as the book progresses. Use these steps to
create a new notebook:

1 . Click New > Python (default).

A new tab opens in the browser with the new notebook, as shown in Figure 3-8.
Notice that the notebook contains a cell and that Notebook has highlighted the
cell so that you can begin typing code in it. The title of the notebook is Untitled
right now. That's not a particularly helpful title, so you need to change it.

@ Untitled - Mozilla Firefox =R
File Edit View History Bookmarks Tools Help
AdD/ x y Untitled x
aA S =~ localhost:8888/notebooks/A4D/Untitled c + ® a4 S- & a =
= JU pyter Untitled {unssved changes) #
File Edit View Insert Cell Kernel Widgets Help & ‘ Python [default] O
+ 52/ @ B+ ¥ M B C | code [r] = celMfoobar | @ & @

In []:

2. Cclick Untitled on the page.
Notebook asks what you want to use as a new name, as shown in Figure 3-9.
3. Type A4D; 03; Sample and press Enter.

The new name tells you that this is a file for Algorithms For Dummies, Chapter 3,
Sample.ipynb. Using this naming convention lets you easily differentiate these
files from other files in your repository.

CHAPTER 3 Using Python to Work with Algorithms 61

FIGURE 3-9:
Provide a new
name for your

notebook.

FIGURE 3-10:
Notebook uses
cells to store
your code.

@ Untitled - Mozilla Firefox (=& =S
File Edit View History Bookmarks Tools Help

= A4DI x /': Untitled x-\'\

S B S - (€ O locahost:3888/notebooks/AD/ Untitled c + ® 4 @- & A =

Rename Notebook

Enter a new notebook name:

oK Cancel

Of course, the Sample notebook doesn’t contain anything just yet. Place the cursor
in the cell, type print('Python is really cool!'), and then click the Run button (the
button with the right-pointing arrow on the toolbar). You see the output shown in
Figure 3-10. The output is part of the same cell as the code. (The code resides in a
square box and the output resides outside that square box, but both are within the
cell.) However, Notebook visually separates the output from the code so that you
can tell them apart. Notebook automatically creates a new cell for you.

@ A4D; 03; Sample - Mozilla Firefox =2I=h(F=|
File Edit Wiew History Bookmarks Tools Help

~ MDI % I//: A4D; 03; Sample x\

3 A S ¥+ (& O localhost8388/notebooks/AD/AAD% | € + ® 4 8- & A =

ZJupyter A4p; 03; sample wroes mensen o
3 ; 03; p

File Edit View Insert Cell Kernel Widgets Help # |F‘yth0n [default] O
+ = A B 4 v M B C Codk [z] = Celfoobar @& & o

In [1]: | print('Python is really cool!"

Python is really cool!

In []:

62 PART 1 Getting Started

rcomputer [www.konkurcomputer.ir] vaydls psis ()
konkurcomputer.ir —Sgyg®™—

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 3-11:
Any notebooks
you create
appear in the
repository list.

When you finish working with a notebook, shutting it down is important. To close a
notebook, choose File= Close and Halt. You return to the Home page, where you can
see that the notebook you just created is added to the list, as shown in Figure 3-11.

@ A4DI - Mozilla Firefox (=1 [HOoEc|
File Edit View History Bookmarks Tools Help
AAD/ %\
A S #=- (€ localhost: 6888/tree/A4D2 ¢ 9 ¥ ® 4 - & o =
~ Jupyter

Files Running Clusters Conda
Select items to perform actions on them. Upload | New~ &

~ & | AdD

& AAD; 03; Sample.ipynb

Exporting a notebook

Creating notebooks and keeping them all to yourself isn’t much fun. At some
point, you want to share them with other people. To perform this task, you must
export your notebook from the repository to a file. You can then send the file to
someone else, who will import it into his or her repository.

The previous section shows how to create a notebook named A4D; 03; Sample. You
can open this notebook by clicking its entry in the repository list. The file reopens
so that you can see your code again. To export this code, choose File=> Download
As> Notebook (.ipynb). What you see next depends on your browser, but you gen-
erally see some sort of dialog box for saving the notebook as a file. Use the same
method for saving the IPython Notebook file as you use for any other file you save
using your browser.

Removing a notebook

Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files you don’t
need, you can remove these unwanted notebooks from the list. Use these steps to
remove the file:

1. select the box next to the A4D; 03; Sample.ipynb entry.

2. Click the trash can icon (Delete) at the top of the page.

You see a Delete notebook warning message like the one shown in Figure 3-12.

CHAPTER 3 Using Python to Work with Algorithms 63

@ A4D/ - Mozilla Firefox [E=E=)
File Edit View History Bookmarks Tools Help

Y N
- x
j = AdDY \

N & S #- (€)Dlocahost 3688/ rec/AD c @ 4+ ® 4 & »

Delete

Are you sure you want to permanently delete: A4D; 03; Sample.ipynb?

FIGURE 3-12:
Notebook warns
you before
removing any
files from the
repository.

3. Click Delete.

The file gets removed from the list.

Importing a notebook

To use the source code from this book, you must import the downloaded files into
your repository. The source code comes in an archive file that you extract to a
location on your hard drive. The archive contains a list of . ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for
details on downloading the source code). The following steps tell how to import
these files into your repository:

1. click Upload at the top of the page.

What you see depends on your browser. In most cases, you see some type of
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files that you want to import
into Notebook.

3. Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-13. The file isn't
part of the repository yet — you've simply selected it for upload.

64 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Higuls josis ()

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

@ A4D/ - Mozilla Firefox [= ===
File Edit View History Bookmarks Tools Help

A4D/ x

A S #- (& localhost 8888/tree/A4D c O 3 ® 4 - »

Z Jupyter

Files Running Clusters Conda

Select items to perform actions on them. Upload || Neww | &
FIGURE 3-13:

The files that you
want to add to
the repository =
appear as part of
an upload list
consisting of one

B |~ |#® /1 MD

Noteb

k list empty

S
=]

L}

A4D%3B8+03%3B+Sample.ipynb Upload Cancel

or more
filenames.
When you export a file, Notebook converts any special characters to a form
@ that your system will accept with greater ease. Figure 3-13 shows this conver-
sion in action. The semicolons appear as %3B, and spaces appear as a + (plus
TIP sign). You must change these characters to their Notebook form to see the title

as you expect it.
4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

Understanding the datasets
used in this book

This book uses a number of datasets, all of which appear in the scikit-learn package.
These datasets demonstrate various ways in which you can interact with data, and
you use them in the examples to perform a variety of tasks. The following list
provides a quick overview of the function used to import each of the datasets into
your Python code:

¥ load_boston(): Regression analysis with the Boston house-prices dataset
¥ load_iris(): Classification with the iris dataset

¥ load_diabetes(): Regression with the diabetes dataset

¥ load_digits([n_class]): Classification with the digits dataset

¥ fetch_20@newsgroups(subset="train") : Data from 20 newsgroups

¥ fetch_olivetti_faces():Olivetti faces dataset from AT&T

CHAPTER 3 Using Python to Work with Algorithms 65

FIGURE 3-14:

The Boston object
contains the
loaded dataset.

The technique for loading each of these datasets is the same across examples. The
following example shows how to load the Boston house-prices dataset. You can
find the code in the A4D; ©3; Dataset Load.ipynb notebook.

from sklearn.datasets import load_boston
Boston = load_boston()
print(Boston.data.shape)

(506, 13)

To see how the code works, click Run Cell. The output from the print() call is
(506, 13).You can see the output shown in Figure 3-14.

@ A4D; 03; Dataset Load - Mozilla Firefox o)==
File Edit View History Bookmarks Tools Help

. A4D/ * | A4D:; 03; Dataset Load ®

A s =~ localhost:8888/notebaoks/A4D/AID%3B 03 c 9 3 ® 4 - » =
. Jupyter A4D:; 03; Dataset Load unssves changes A
File Edit View Insert Cell Kernel Widgets Help & ‘ Python [default] O

B o+ & B 4+ ¥ W E C co [] =] celMoobar | & | & =@

In [1]:| from sklearn.datasets import load boston
Boston = load boston()
print (Boston.data.shape

(508, 13)

In[]:l

66 PART 1 Getting Started

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Performing numeric and logic-based
tasks

» Working with strings

» Performing tasks with dates

» Packaging code by using functions

» Making decisions and repeating steps
» Managing data in memory

» Reading data in storage objects

» Finding data faster by using
dictionaries

Chapter 4

Introducing Python for
Algorithm Programming

recipe is a kind of algorithm because it helps you cook tasty food by using

a series of steps (and thereby get rid of your hunger). You can devise many

ways to create a sequence of steps that solve a problem. Procedures of
every variety and description abound, all of which describe a sequence of steps
used to solve a problem. Not every sequence of steps is concrete. Mathematical
notations present a series of steps to solve a numeric problem, but many people
view them as so many oddly shaped symbols in an arcane language that few can
understand. A computer language can turn the arcane language into a concrete
form of English-like statements that solve the problem in a manner that works
for most humans.

The previous chapter in this book, Chapter 3, helps you install a copy of Python

to work with the examples in this book. You use Python throughout the book to
solve numeric problems using algorithms that you can also express in

CHAPTER 4 Introducing Python for Algorithm Programming 67

mathematical notation. The reason that this book uses a programming language
is to turn those oddly shaped abstract symbols into something that most people
can understand and use to solve real-world problems.

Before you can use Python to perform tasks with algorithms, you need at least a
passing knowledge of how Python works. This chapter isn’t designed to make you
a Python expert. However, it does provide you with enough information to make
sense of the example code with the commentary provided. The various sections
help you understand how Python performs tasks in a concrete manner. For exam-
ple, you need to know how Python works with various kinds of data in order to
determine what the example code is doing with that data. You find the essentials
of working with numeric, logical, string, and date data in the first three sections.

Imagine a cookbook, or any book for that matter, that provided steps for
performing every task that the book tells you how to perform as one long narrative
without any breaks. Trying to find a specific recipe (or other procedure) would
become impossible and the book would be useless. In fact, no one would write
such a book. The fourth section of the chapter discusses functions, which are akin
to the individual recipes in a cookbook. You can combine functions to create an
entire program, much as you would combine recipes to create an entire dinner.

The next four sections discuss various ways to manage data, which means read-
ing, writing, modifying, and erasing it as needed. You also need to know how to
make decisions and what to do when you need to perform the same set of steps
more than one time. Data is a resource, just as flour, sugar, and other ingredients
are resources you use when working with a recipe. The different kinds of data
require different techniques to make them into an application that solves the
problem proposed by an algorithm. These sections tell you about the various ways
to manipulate data and work with it to solve problems.

Working with Numbers and Logic

Interacting with algorithms involves working with data of various sorts, but much
of the work involves numbers. In addition, you use logical values to make deci-
sions about the data you use. For example, you might need to know whether two
values are equal or whether one value is greater than another value. Python sup-
ports these number and logic value types:

3 Any whole number is an integer. For example, the value 1 is a whole number, so
it's an integer. On the other hand, 1.0 isn't a whole number; it has a decimal part
to it, so it's not an integer. Integers are represented by the int data type. On
most platforms, you can store numbers between -9,223,372,036,854,775,808

68 PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

and 9,223,372,036,854,775,807 within an int (which is the maximum value that
fits in a 64-bit variable).

3 Any number that includes a decimal portion is a floating-point value. For exam-
ple, 1.0 has a decimal part, so it's a floating-point value. Many people get
confused about whole numbers and floating-point numbers, but the difference
is easy to remember. If you see a decimal in the number, it's a floating-point
value. Python stores floating-point values in the float data type. The maximum
value that a floating point variable can contain is £1.7976931348623157 x 10308
and the minimum value that a floating point variable can contain is
42.2250738585072014 x 10-3% on most platforms.

3 A complex number consists of a real number and an imaginary number that
are paired together. In case you've completely forgotten about complex
numbers, you can read about them athttp: //www.mathsisfun.com/
numbers/complex—numbers.html. The imaginary part of a complex number
always appears with a j after it. So if you want to create a complex number
with 3 as the real part and 4 as the imaginary part, you make an assignment
like this: myComplex = 3 + 4j.

¥ Logical arguments require Boolean values, which are named after George
Bool. When using a Boolean value in Python, you rely on the bool type.
A variable of this type can contain only two values: True or False. You can
assign a value by using the True or False keywords, or you can create an
expression that defines a logical idea that equates to true or false. For
example, you could saymyBool = 1 > 2, which would equate to False
because 1 is most definitely not greater than 2.

Now that you have the basics down, it’s time to see the data types in action. The
following paragraphs provide a quick overview of how you can work with both
numeric and logical data in Python.

Performing variable assignments

When working with applications, you store information in variables. A variable is
a kind of storage box. Whenever you want to work with the information, you
access it using the variable. If you have new information that you want to store,
you put it in a variable. Changing information means accessing the variable first
and then storing the new value in the variable. Just as you store things in boxes in
the real world, so you store things in variables (a kind of storage box) when work-
ing with applications. To store data in a variable, you assign the data to it using
any of a number of assignment operators (special symbols that tell how to store the
data). Table 4-1 shows the assignment operators that Python supports.

CHAPTER 4 Introducing Python for Algorithm Programming 69

http://www.mathsisfun.com/numbers/complex-numbers.html
http://www.mathsisfun.com/numbers/complex-numbers.html

TABLE 4-1 Python Assignment Operators
Operator Description Example
= Assigns the value found in the right operand to the left operand MyVar =5 results in
MyVar containing 5
+= Adds the value found in the right operand to the value found in the left MyVar += 2 results in
operand and places the result in the left operand MyVar containing 7
-= Subtracts the value found in the right operand from the value found in MyVar -= 2 results in
the left operand and places the result in the left operand MyVar containing 3
*= Multiplies the value found in the right operand by the value found in the MyVar *= 2 results in
left operand and places the result in the left operand MyVar containing 10
/= Divides the value found in the left operand by the value found in the MyVar /= 2 results in
right operand and places the result in the left operand MyVar containing 2.5
%= Divides the value found in the left operand by the value found in the MyVar %= 2 results in
right operand and places the remainder in the left operand MyVar containing 1
*k= Determines the exponential value found in the left operand when raised MyVar ** 2 results in
to the power of the value found in the right operand and places the MyVar containing 25
result in the left operand
/1= Divides the value found in the left operand by the value found in the right ~ MyVar //= 2 results in
operand and places the integer (whole number) result in the left operand ~ MyVar containing 2
Doing arithmetic
Storing information in variables makes it easily accessible. However, to perform
any useful work with the variable, you usually perform some type of arithmetic
operation on it. Python supports the common arithmetic operators you use to
perform tasks by hand. They appear in Table 4-2.
TABLE 4-2 Python Arithmetic Operators
Operator Description Example
+ Adds two values together 5+2=7
- Subtracts the right operand from the left operand 5-2=3
* Multiplies the right operand by the left operand 5%2=10
/ Divides the left operand by the right operand 5/2=25
% Divides the left operand by the right operand and returns the remainder 5%2=1
** Calculates the exponential value of the right operand by the left operand 5**2=25
/1 Performs integer division, in which the left operand is divided by the right 5//12=2
operand and only the whole number is returned (also called floor division)
70 PART 1 Getting Started

Hgyols gsis m

[www.konkurcomputer.ir] ol jgsis

urcomputer

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Sometimes you need to interact with just one variable. Python supports a number
of unary operators, those that work with just one variable, as shown in Table 4-3.

TABLE 4.3 Python Unary Operators
Operator Description Example
~ Inverts the bits in a number so that all the 0 bits ~4 results in a value of -5

become 1 bits and vice versa

- Negates the original value so that positive becomes —(-4) results in 4 and -4 results in -4
negative and vice versa

+ Is provided purely for the sake of completeness; returns +4 results in a value of 4
the same value that you provide as input

Computers can perform other sorts of math tasks because of the way in which the
processor works. It’s important to remember that computers store data as a series
of individual bits. Python lets you access these individual bits by using bitwise
operators, as shown in Table 4-4.

TABLE 4-4 Python Bitwise Operators

Operator Description Example

& (And) Determines whether both individual bits within two operators 0b1100 & 0b0110 =
are true and sets the resulting bit to true when they are. 0b0100

| (Or) Determines whether either of the individual bits within two 0b1100 | Ob0110 =
operators are true and sets the resulting bit to true when 0b1110
they are.

A (Exclusive or) Determines whether just one of the individual bits within two 0b1100 A 0b0110 =
operators is true and sets the resulting bit to true when one is. 0b1010

When both bits are true or both bits are false, the result is false.

~(One's Calculates the one’s complement value of a number. ~0b1100=-0b1101

complement)
~0b0110 =-0b0111

<< (Left shift) Shifts the bits in the left operand left by the value of the right 0b00110011 <<2 =
operand. All new bits are set to 0 and all bits that flow off the 0b11001100
end are lost.

>> (Right shift) Shifts the bits in the left operand right by the value of the right 0b00110011>>2 =
operand. All new bits are set to 0 and all bits that flow off the 0b00001100
end are lost.

CHAPTER 4 Introducing Python for Algorithm Programming 71

Comparing data by using
Boolean expressions

Using arithmetic to modify the content of variables is a kind of data manipulation.
To determine the effect of data manipulation, a computer must compare the cur-
rent state of the variable against its original state or the state of a known value. In
some cases, detecting the status of one input against another is also necessary. All
these operations check the relationship between two variables, so the resulting
operators are relational operators, as shown in Table 4-5.

TABLE 4.5 Python Relational Operators
Operator Description Example
== Determines whether two values are equal. Notice that the relational 1==2is False

operator uses two equals signs. A mistake many developers make is
using just one equals sign, which results in one value being assigned
to another.

1= Determines whether two values are not equal. Some older versions 11=2isTrue
of Python allowed you to use the <> operator in place of the !=
operator. Using the <> operator results in an error in current
versions of Python.

> Verifies that the left operand value is greater than the right 1>2is False
operand value.

< Verifies that the left operand value is less than the right 1<2isTrue
operand value.

>= Verifies that the left operand value is greater than or equal to the 1>=2is False
right operand value.

<= Verifies that the left operand value is less than or equal to the right 1<=2isTrue
operand value.

Sometimes a relational operator can’t tell the whole story of the comparison of
two values. For example, you might need to check a condition in which two sepa-
rate comparisons are needed, such as MyAge > 40 and MyHeight < 74. The need
to add conditions to the comparison requires a logical operator of the sort shown
in Table 4-6.

72 PART 1 Getting Started

rcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TABLE 4-6 Python Logical Operators
Operator Description Example
and Determines whether both operands are true. True and True is True
True and False is False
False and True is False

False and False is False

or Determines when one of two operands is true. True or True is True
True or False is True
False or True is True

False or False is False

not Negates the truth value of a single operand. A true not True is False

value becomes false and a false value becomes true.)
not False is True

Computers provide order to comparisons by making some operators more signifi-
cant than others. The ordering of operators is operator precedence. Table 4-7 shows
the operator precedence of all the common Python operators, including a few you
haven’t seen as part of a discussion yet. When making comparisons, always con-
sider operator precedence because otherwise, the assumptions you make about a
comparison outcome will likely be wrong.

TABLE 4.7 Python Operator Precedence
Operator Description
0 You use parentheses to group expressions and to override the default precedence

so that you can force an operation of lower precedence (such as addition) to take
precedence over an operation of higher precedence (such as multiplication).

i Exponentiation raises the value of the left operand to the power of the
right operand.

~+- Unary operators interact with a single variable or expression.

*/%// Multiply, divide, modulo, and floor division.

+- Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

A Bitwise exclusive OR and standard OR.

<=<>>= Comparison operators.

(continued)

CHAPTER 4 Introducing Python for Algorithm Programming 73

TABLE 4-7 (continued)

Operator Description

=== Equality operators.

=%=/=//=-=+=*=**= Assignment operators.
is Identity operators.

is not

in Membership operators.
notin

not or and Logical operators.

Creating and Using Strings

Of all the data types, strings are the most easily understood by humans and not
understood at all by computers. A string is simply any grouping of characters you
place within double quotation marks. For example, myString = "Python is a
great language." assigns a string of characters to myString.

The main reason to use strings when working with algorithms is to provide user
interaction — either as requests for input or as a means of making output easier
to understand. You can also perform analysis of string data as part of working
rememser With algorithms, but the computer doesn’t actually require strings as part of its
sequence of steps to obtain a solution to a problem. In fact, the computer doesn’t
see letters at all. Every letter you use is represented by a number in memory. For
example, the letter A is actually the number 65. To see this for yourself, type
ord("A") at the Python prompt and press Enter. You see 65 as output. You can
convert any single letter to its numeric equivalent using the ord() command.

STARTING IPython

Most of the book relies on Jupyter Notebook (see Chapter 3) because it provides meth-
ods for creating, managing, and interacting with complex coding examples. However,
sometimes you need a simple interactive environment to use for quick tests, which is
the route this chapter uses. Anaconda comes with two such environments, IPython and
Jupyter QT Console. Of the two, IPython is the simplest to use, but both environments
provide similar functionality. To start IPython, simply click its entry in the Anaconda3
folder on your system. For example, when working with Windows, you choose

Start=> All Programs => Anaconda3 = [Python. You can also start IPython in a console or
terminal window by typing IPython and pressing Enter.

74 PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

Because the computer doesn’t really understand strings, but strings are so useful
in writing applications, you sometimes need to convert a string to a number. You
can use the int() and float() commands to perform this conversion. For exam-
ple, if you type myInt = int('123") and press Enter at the Python prompt, you
create an int named myInt that contains the value 123.

You can convert numbers to a string as well by using the str() command. For
example, if you type myStr = str(1234.56) and press Enter, you create a string
containing the value "1234.56" and assign it to myStr. The point is that you can
go back and forth between strings and numbers with great ease. Later chapters
demonstrate how these conversions make many seemingly impossible tasks quite
doable.

As with numbers, you can use some special operators with strings (and many
objects). The member operators enable you to determine when a string contains
specific content. Table 4-8 shows these operators.

TABLE 4-8 Python Membership Operators
Operator Description Example
in Determines whether the value in the left operand “Hello” in “Hello Goodbye”
appears in the sequence found in the right operand is True
notin Determines whether the value in the left operand is “Hello” not in “Hello Goodbye”
missing from the sequence found in the right operand s False
The discussion in this section also makes it obvious that you need to know the
kind of data that variables contain. You use the identity operators to perform this
task, as shown in Table 4-9.
TABLE 4-9 Python Identity Operators
Operator Description Example
is Evaluates to true when the type of the value or type(2) is intis True
expression in the right operand points to the same
type in the left operand
is not Evaluates to true when the type of the value or type(2) is not int is False

expression in the right operand points to a different
type than the value or expression in the left operand

CHAPTER 4 Introducing Python for Algorithm Programming 75

Interacting with Dates

76

REMEMBER

Dates and times are items that most people work with quite a bit. Society bases
almost everything on the date and time that a task needs to be or was completed.
We make appointments and plan events for specific dates and times. Most of our
day revolves around the clock. When working with algorithms, the date or time at
which a particular step in a sequence occurs can be just as important as how the
step occurs and what happens as a result of performing the step. Algorithms rely
on date and time to organize data so that humans can better understand the data
and the resulting output of the algorithm.

Because of the time-oriented nature of humans, it’s a good idea to look at how
Python deals with interacting with date and time (especially storing these values
for later use). As with everything else, computers understand only numbers —
date and time don’t really exist. The algorithm, not the computer, relies on date
and time to help organize the series of steps performed to solve a problem.

To work with dates and times, you must issue a special import datetime com-
mand. Technically, this act is called importing a module. Don’t worry about how the
command works right now — just use it whenever you want to do something with
date and time.

Computers do have clocks inside them, but the clocks are for the humans using
the computer. Yes, some software also depends on the clock, but again, the
emphasis is on human needs rather than anything the computer might require. To
get the current time, you can simply type datetime.datetime.now() and press
Enter. You see the full date and time information as found on your computer’s
clock, such as datetime.datetime(2016, 12, 20, 10, 37, 24, 460099).

You may have noticed that the date and time are a little hard to read in the existing
format. Say that you want to get just the current date, and in a readable format. To
accomplish this task, you access just the date portion of the output and convert it
into a string. Type str(datetime.datetime.now().date()) and press Enter. You now
have something a little more usable, such as '2016-12-20".

Interestingly enough, Python also has a time() command, which you can use to
obtain the current time. You can obtain separate values for each of the components
that make up date and time using the day, month, year, hour, minute, second, and
microsecond values. Later chapters help you understand how to use these various
date and time features to make working with algorithms easier.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Creating and Using Functions

©

REMEMBER

Every step in an algorithm normally requires a single line of Python code — an
English-like instruction that tells the computer how to move the problem solution
one step closer to completion. You combine these lines of code to achieve a desired
result. Sometimes you need to repeat the instructions with different data, and in
some cases your code becomes so long that it’s hard to keep track of what each
part does. Functions serve as organization tools that keep your code neat and tidy.
In addition, functions make it easy to reuse the instructions you’ve created as
needed with different data. This section of the chapter tells you all about func-
tions. More important, in this section you start creating your first serious applica-
tions in the same way that professional developers do.

Creating reusable functions

You go to your closet, take out pants and shirt, remove the labels, and put them
on. At the end of the day, you take everything off and throw it in the trash.
Hmmm . . . that really isn’t what most people do. Most people take the clothes
off, wash them, and then put them back into the closet for reuse. Functions are
reusable, too. No one wants to keep repeating the same task; it becomes monoto-
nous and boring. When you create a function, you define a package of code that
you can use over and over to perform the same task. All you need to do is tell the
computer to perform a specific task by telling it which function to use. The com-
puter faithfully executes each instruction in the function absolutely every time
you ask it to do so.

When you work with functions, the code that needs services from the function is
named the caller, and it calls upon the function to perform tasks for it. Much of the
information you see about functions refers to the caller. The caller must supply
information to the function, and the function returns information to the caller.

At one time, computer programs didn’t include the concept of code reusability. As
a result, developers had to keep reinventing the same code. It didn’t take long for
someone to come up with the idea of functions, though, and the concept has
evolved over the years until functions have become quite flexible. You can make
functions do anything you want. Code reusability is a necessary part of applica-
tions to

¥ Reduce development time
¥ Reduce programmer error

¥ Increase application reliability

CHAPTER 4 Introducing Python for Algorithm Programming 77

¥ Allow entire groups to benefit from the work of one programmer
¥ Make code easier to understand

¥ Improve application efficiency

In fact, functions do a whole list of things for applications in the form of reus-
ability. As you work through the examples in this book, you see how reusability
makes your life significantly easier. If not for reusability, you’d still be program-
ming by plugging 0s and 1s into the computer by hand.

Creating a function doesn’t require much work. To see how functions work, open
a copy of IPython and type in the following code (pressing Enter at the end of
each line):

def SayHello():
print('Hello There!')

To end the function, you press Enter a second time after the last line. A function
begins with the keyword def (for define). You provide a function name, parenthe-
ses that can contain function arguments (data used in the function), and a colon.
The editor automatically indents the next line for you. Python relies on whitespace
to define code blocks (statements that are associated with each other in a
function).

You can now use the function. Simply type SayHello() and press Enter. The paren-
theses after the function name are important because they tell Python to execute
the function rather than tell you that you are accessing a function as an object (to
determine what it is). You see Hello There! as the output.

Calling functions

Functions can accept arguments (additional bits of data) and return values. The
capability to exchange data makes functions far more useful than they otherwise
might be. The following sections describe how to call functions in a variety of
ways to both send and receive data.

Sending requirement arguments

A function can require the caller to provide arguments to it. A required argument
is a variable that must contain data for the function to work. Open a copy of IPy-
thon and type the following code:

def DoSum(Valuel, Value2):
return Valuel + Value2

78 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

REMEMBER

You have a new function, DoSum(). This function requires that you provide two
arguments to use it. At least, that’s what you’ve heard so far. Type DoSum() and
press Enter. You see an error message like this one:

TypeError

Traceback (most recent call last)
<ipython-input-2-a37c1b30cd89> in <module> ()
————> 1 DoSum()

TypeError: DoSum() missing 2 required positional
arguments: 'Valuel' and 'Value2'

Trying DoSum() with just one argument would result in another error message. To
use DoSum() ,you must provide two arguments. To see how this works, type
DoSum(1, 2) and press Enter. You see the expected result of 3.

Notice that DoSum() provides an output value of 3 when you supply 1 and 2 as
inputs. The return statement provides the output value. Whenever you see return
in a function, you know that the function provides an output value.

Sending arguments by keyword

As your functions become more complex and the methods to use them do as well,
you may want to provide a little more control over precisely how you call the func-
tion and provide arguments to it. Until now, you have positional arguments, which
means that you have supplied values in the order in which they appear in the
argument list for the function definition. However, Python also has a method for
sending arguments by keyword. In this case, you supply the name of the argument
followed by an equals sign (=) and the argument value. To see how this works,
open a copy of IPython and type the following code:

def DisplaySum(Valuel, Value2):
print(str(Valuel) + ' + ' + str(Value2) + ' = ' +
str((Valuel + Value2)))

Notice that the print() function argument includes a list of items to print and
that those items are separated by plus signs (+). In addition, the arguments are of
different types, so you must convert them using the str () function. Python makes
it easy to mix and match arguments in this manner. This function also introduces
the concept of automatic line continuation. The print () function actually appears
on two lines, and Python automatically continues the function from the first line
to the second.

CHAPTER 4 Introducing Python for Algorithm Programming 79

80

Next, it’s time to test DisplaySum(). Of course, you want to try the function using
positional arguments first, so type DisplaySum(2, 3) and press Enter. You see the
expected output of 2 + 3 = 5. Now type DisplaySum(Value2 = 3, Value1 = 2) and
press Enter. Again, you receive the output 2 + 3 = 5 even though the position of
the arguments has been reversed.

Giving function arguments a default value

Whether you make the call using positional arguments or keyword arguments, the
functions to this point have required that you supply a value. Sometimes a func-
tion can use default values when a common value is available. Default values make
the function easier to use and less likely to cause errors when a developer doesn’t
provide an input. To create a default value, you simply follow the argument name
with an equals sign and the default value. To see how this works, open a copy of
IPython and type the following code:

def SayHello(Greeting = "No Value Supplied"):
print(Greeting)

The SayHello() function provides an automatic value for Greeting when a caller
doesn’t provide one. When someone tries to call SayHello() without an
argument, it doesn’t raise an error. Type SayHello() and press Enter to see for
yourself — you see the default message. Type SayHello("Howdy!") to see a nor-
mal response.

Creating functions with a variable
number of arguments

In most cases, you know precisely how many arguments to provide with your
function. It pays to work toward this goal whenever you can because functions
with a fixed number of arguments are easier to troubleshoot later. However,
sometimes you simply can’t determine how many arguments the function will
receive at the outset. For example, when you create a Python application that
works at the command line, the user might provide no arguments, the maximum
number of arguments (assuming there is one), or any number of arguments in
between.

Fortunately, Python provides a technique for sending a variable number of argu-
ments to a function. You simply create an argument that has an asterisk in front
of it, such as xVarArgs. The usual technique is to provide a second argument that
contains the number of arguments passed as an input. To see how this works,
open a copy of IPython and type the following code:

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

def DisplayMulti(ArgCount = @, *VarArgs):
print('You passed ' + str(ArgCount) +
VarArgs)

arguments. ',

Notice that the print () function displays a string and then the list of arguments.
Because of the way this function is designed, you can type DisplayMulti() and
press Enter to see that you can pass zero arguments. To see multiple arguments at
work, type DisplayMulti(3, 'Hello', 1, True) and press Enter. The output of (' You
passed 3 arguments.', ('Hello', 1, True)) shows that you need not pass
values of any particular type.

Using Conditional and Loop Statements

Algorithms often require steps that make decisions or perform some steps more
than one time. For example, you might need to throw out a value that doesn’t fit
with the rest of the data, which requires making a decision, or you might need to
process the data more than once to obtain a desired result, such as when you filter
the data. Python accommodates this need by providing special statements that
make decisions or let you perform steps more than once, as described in the sec-
tions that follow.

Making decisions using the if statement

You use if statements regularly in everyday life. For example, you may say to
yourself, “If it’s Wednesday, I'll eat tuna salad for lunch.” The Python if state-
ment is a little less verbose, but it follows precisely the same pattern. To see how
this works, open a copy of IPython and type the following code:

def TestValue(Value):

if Value ==
print('Value equals 5!")

elif Value ==
print('Value equals 6!")

else:
print('Value is something else.')
print('It equals ' + str(Value))

Every Python if statement begins, oddly enough, with the word if. When Python
sees if, it knows that you want it to make a decision. After the word if comes a
condition. A condition simply states what sort of comparison you want Python to
make. In this case, you want Python to determine whether Value contains the
value 5.

CHAPTER 4 Introducing Python for Algorithm Programming 81

82

A\

WARNING

REMEMBER

Notice that the condition uses the relational equality operator, ==, and not the
assignment operator, =. A common mistake that developers make is to use the
assignment operator rather than the equality operator. Using the assignment
operator in place of the equality operator will cause your code to malfunction.

The condition always ends with a colon (:). If you don’t provide a colon, Python
doesn’t know that the condition has ended and will continue to look for additional
conditions on which to base its decision. After the colon comes any tasks you want
Python to perform.

You may need to perform multiple tasks using a single if statement. The elif
clause makes it possible to add an additional condition and associated tasks. A
clause is an addendum to a previous condition, which is an i f statement in this
case. The elif clause always provides a condition, just as the i f statement does,
and it has its own associated set of tasks to perform.

Sometimes you need to do something no matter what the condition might be. In
this case, you add the else clause. The else clause tells Python to do something
in particular when the conditions of the if statement aren’t met.

Notice how indenting is becoming more important as the functions become more
complex. The function contains an if statement. The if statement contains just
one print() statement. The else clause contains two print() statements.

To see this function in action, type TestValue(1) and press Enter. You see the out-
put from the else clause. Type TestValue(5) and press Enter. The output now
reflects the i f statement output. Type TestValue(6) and press Enter. The output
now shows the results of the elif clause. The result is that this function is more
flexible than previous functions in the chapter because it can make decisions.

Choosing between multiple options
using nested decisions

Nesting is the process of placing a subordinate statement within another state-
ment. You can nest any statement within any other statement, in most cases. To
see how this works, open a copy of IPython and type the following code:

def SecretNumber():
One = int(input("Type a number between 1 and 10: "))
Two = int(input("Type a number between 1 and 10: "))

if (One >= 1) and (One <= 10):
if (Two >= 1) and (Two <= 10):

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

print('Your secret number is: ' + str(One x Two))
else:
print("Incorrect second value!")
else:
print("Incorrect first value!")

In this case, SecretNumber() asks you to provide two inputs. Yes, you can get
inputs from a user when needed by using the input() function. The int() func-
tion converts the inputs to a number.

There are two levels of i f statement this time. The first level checks for the valid-
ity of the number in One. The second level checks for the validity of the number in
Two. When both One and Two have values between 1 and 10, .SecretNumber () out-
puts a secret number for the user.

To see SecretNumber () in action, type SecretNumber() and press Enter. Type 20
and press Enter when asked for the first input value, and type 10 and press Enter
when asked for the second. You see an error message telling you that the first
value is incorrect. Type SecretNumber() and press Enter again. This time, use
values of 10 and 20. The function will tell you that the second input is incorrect.
Try the same sequence again using input values of 10 and 10.

Performing repetitive tasks
using the for loop

Sometimes you need to perform a task more than one time. You use the for loop
statement when you need to perform a task a specific number of times. The for
loop has a definite beginning and a definite end. The number of times that this
loop executes depends on the number of elements in the variable you provide. To
see how this works, open a copy of IPython and type the following code:

def DisplayMulti(*VarArgs):
for Arg in VarArgs:

if Arg.upper() == 'CONT':

continue

print('Continue Argument: ' + Arg)
elif Arg.upper() == 'BREAK':

break

print('Break Argument: ' + Arg)
print('Good Argument: ' + Arg)

In this case, the for loop attempts to process each element in VarArgs. Notice that
there is a nested i f statement in the loop and it tests for two ending conditions.

CHAPTER 4 Introducing Python for Algorithm Programming 83

TIP

In most cases, the code skips the i f statement and simply prints the argument.
However, when the i f statement finds the words CONT or BREAK in the input val-
ues, it performs one of these two tasks:

¥ continue: Forces the loop to continue from the current point of execution
with the next entry in VarArgs.

¥ break: Stops the loop from executing.

The keywords can appear using any combination of uppercase and lowercase let-
ters, such as ConT, because the upper () function converts them to uppercase. The
DisplayMulti() function can process any number of input strings. To see it in
action, type DisplayMulti('Hello', 'Goodbye', 'First', 'Last') and press Enter. You
see each of the input strings presented on a separate line in the output. Now type
DisplayMulti('Hello', 'Cont', 'Goodbye', 'Break’, 'Last') and press Enter. Notice
that the words Cont and Break don’t appear in the output because they’re key-
words. In addition, the word Last doesn’t appear in the output because the for
loop ends before this word is processed.

Using the while statement

The while loop statement continues to perform tasks until such time that a con-
dition is no longer true. As with the for statement, the while statement supports
both the continue and break keywords for ending the loop prematurely. To see
how this works, open a copy of IPython and type the following code:

def SecretNumber():

GotlIt = False

while GotlIt == False:
int(input("Type a number between 1 and 10: "))
Two = int(input("Type a number between 1 and 10: "))

One

if (One >= 1) and (One <= 10):
if (Two >= 1) and (Two <= 10):
print('Secret number is: ' + str(One * Two))
GotIt = True
continue
else:
print("Incorrect second value!")
else:
print("Incorrect first value!")
print("Try again!")

84 PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Storing

This is an expansion of the SecretNumber() function first described in the
“Choosing between multiple options using nested decisions” section, earlier in
this chapter. However, in this case, the addition of a while loop statement means
that the function continues to ask for input until it receives a valid response.

To see how the while statement works, type SecretNumber() and press Enter.
Type 20 and press Enter for the first prompt. Type 10 and press Enter for the sec-
ond prompt. The example tells you that the first number is wrong and then tells
you to try again. Try a second time using values of 10 and 20. This time, the second
number is wrong and you still need to try again. On the third try, use values of 10
and 10. This time, you get a secret number. Notice that the use of a continue
clause means that the application doesn’t tell you to try again.

Data Using Sets, Lists, and Tuples

When working with algorithms, it’s all about the data. Python provides a host of
methods for storing data in memory. Each method has advantages and
disadvantages. Choosing the most appropriate method for your particular need is
important. The following sections discuss three common techniques used for
storing data for data science needs.

Creating sets

Most people have used sets at one time or another in school to create lists of items
that belong together. These lists then became the topic of manipulation using
math operations such as intersection, union, difference, and symmetric differ-
ence. Sets are the best option to choose when you need to perform membership
testing and remove duplicates from a list. You can’t perform sequence-related
tasks using sets, such as indexing or slicing. To see how you can work with sets,
start a copy of IPython and type the following code:

SetA = set(['Red', 'Blue', 'Green', 'Black'])

SetB = set(['Black', 'Green', 'Yellow', 'Orange'])
SetX = SetA.union(SetB)

SetY = SetA.intersection(SetB)

SetZ = SetA.difference(SetB)

You now have five different sets to play with, each of which has some common
elements. To see the results of each math operation, type print(‘{0}\n{1}\n{2}’.

CHAPTER 4 Introducing Python for Algorithm Programming 85

86

TIP

format(SetX, SetY, SetZ)) and press Enter. You see one set printed on each line,
like this:

{'Blue', 'Orange', 'Red', 'Green', 'Black', 'Yellow'}
{'Green', 'Black'}
{'Blue', 'Red'}

The outputs show the results of the math operations: union(), intersection(),
and difference(). Python’s fancier print formatting can be useful in working
with collections such as sets. The format () function tells Python which objects to
place within each of the placeholders in the string. A placeholder is a set of curly
brackets ({}) with an optional number in it. The escape character (essentially a kind
of control or special character), /n, provides a newline character between entries.
You can read more about fancy formatting at https://docs.python.org/3/
tutorial/inputoutput.html.

You can also test relationships between the various sets. For example, type SetA.
issuperset(SetY) and press Enter. The output value of True tells you that SetA is a
superset of SetY. Likewise, if you type SetA.issubset(SetX) and press Enter, you
find that SetA is a subset of SetX.

It’s important to understand that sets are either mutable or immutable. All the
sets in this example are mutable, which means that you can add or remove ele-
ments from them. For example, if you type SetA.add('Purple') and press Enter,
SetA receives a new element. If you type SetA.issubset(SetX) and press Enter now,
you find that SetA is no longer a subset of SetX because SetA has the 'Purple’
element in it.

Creating lists

The Python specification defines a list as a kind of sequence. Sequences simply
provide some means of allowing multiple data items to exist together in a single
storage unit, but as separate entities. Think about one of those large mail holders
you see in apartment buildings. A single mail holder contains a number of small
mailboxes, each of which can contain mail. Python supports other kinds of
sequences as well:

3 Tuples: Atuple is a collection that's used to create complex, list-like sequences.
An advantage of tuples is that you can nest the content of a tuple. This feature
lets you create structures that can hold employee records or x-y coordinate
pairs.

¥ Dictionaries: As with the real dictionaries, you create key/value pairs when
using the dictionary collection (think of a word and its associated definition).

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A dictionary provides incredibly fast search times and makes ordering data
significantly easier.

¥ Stacks: Most programming languages support stacks directly. However,
Python doesn't support the stack, although a workaround exists for that.
A stack is a last in/first out (LIFO) sequence. Think of a pile of pancakes: You
can add new pancakes to the top and also take them off the top. A stack is an
important collection that you can simulate in Python by using a list.

3 Queues: A queue is a first in/first out (FIFO) collection. You use it to track
items that need to be processed in some way. Think of a queue as a line at the
bank. You go into the line, wait your turn, and are eventually called to talk with
ateller.

3 Deques: A double-ended queue (deque) is a queue-like structure that lets you
add or remove items from either end, but not from the middle. You can use a
deque as a queue or a stack or any other kind of collection to which you're
adding and from which you're removing items in an orderly manner (in
contrast to lists, tuples, and dictionaries, which allow randomized access and
management).

Of all the sequences, lists are the easiest to understand and are the most directly
related to a real-world object. Working with lists helps you become better able to
work with other kinds of sequences that provide greater functionality and
improved flexibility. The point is that the data is stored in a list much as you
would write it on a piece of paper: One item comes after another. The list has a
beginning, a middle, and an end. Python numbers the items in the list. (Even if
you might not normally number the list items in real life, using a numbered list
makes the items easy to access.) To see how you can work with lists, start a copy
of IPython and type the following code:

ListA = [0, 1, 2, 3]
ListB = [4, 5, 6, 7]
ListA.extend(ListB)
ListA

When you type the last line of code, you see the output of [@, 1, 2, 3, 4, 5,
6, 7].Theextend() function adds the members of ListB toListA. Besides extend-
ing lists, you can also add to them by using the append() function. Type ListA.
append(-5) and press Enter. When you type ListA and press Enter again, you see
that Python has added -5 to the end of the list. You may find that you need to
remove items again, and you do that by using the remove() function. For example,
type ListA.remove(-5) and press Enter. When you list ListA again by typing ListA
and pressing Enter, you see that the added entry is gone.

CHAPTER 4 Introducing Python for Algorithm Programming 87

For example, if you type ListX = ListA + ListB and press Enter, you find that the
newly created ListX contains both ListA and ListB in it, with the elements of
rememer ListA coming first.

@ Lists also support concatenation by using the plus (+) sign to add one list to another.

Creating and using tuples

A tuple is a collection used to create complex lists, in which you can embed one
tuple within another. This embedding lets you create hierarchies with tuples. A
hierarchy can be something as simple as the directory listing of your hard drive or
an organizational chart for your company. The idea is that you can create complex
data structures using a tuple.

new tuple with the same name and modify it in some way, but you can’t modify
an existing tuple. Lists are mutable, which means that you can change them. So a

rememeer tuple can seem at first to be at a disadvantage, but immutability has all sorts of
advantages, such as being more secure as well as faster. In addition, immutable
objects are easier to use with multiple processors. To see how you can work with
tuples, start a copy of IPython and type the following code:

@ Tuples are immutable, which means that you can’t change them. You can create a

MyTuple = (1, 2, 3, (4, 5, 6, (7, 8, 9)))

MyTuple is nested three levels deep. The first level consists of the values 1, 2, 3,
and a tuple. The second level consists of the values 4, 5, 6, and yet another tuple.
The third level consists of the values 7, 8, and 9. To see how this works, type the
following code into IPython:

for Valuel in MyTuple:
if type(Valuel) == int:
print(Valuel)
else:
for Value2 in Valuel:
if type(Value2) == int:
print("\t", Value2)
else:
for Value3 in ValueZ2:
print("\t\t", Value3)

When you run this code, you find that the values really are at three different levels.
You can see the indentations showing the level:

88 PART1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

3
4
5
6
7
8
9

adding the original entries and the new values to a new tuple. In addition, you can
add tuples to an existing tuple only. To see how this works, type MyNewTuple =

TIP MyTuple.__add__ ((10, 11, 12, (13, 14, 15))) and press Enter. MyNewTuple con-
tains new entries at both the first and second levels, like this: (1, 2, 3, (4, 5,
6, (7, 8, 9)), 10, 11, 12, (13, 14, 15)).

‘ It is possible to perform tasks such as adding new values, but you must do it by

Defining Useful Iterators

The chapters that follow use all kinds of techniques to access individual values in
various types of data structures. For this section, you use two simple lists, defined
as the following:

ListA = ['Orange', 'Yellow', 'Green', 'Brown']
ListB = [1, 2, 3, 4]

The simplest method of accessing a particular value is to use an index. For exam-
ple, if you type ListA[1] and press Enter, you see 'Yellow' as the output. All
indexes in Python are zero based, which means that the first entry is 0, not 1.

Ranges present another simple method of accessing values. For example, if you
type ListB[1:3] and press Enter, the output is [2, 3]. You could use the range as
input to a for loop, such as

for Value in ListB[1:3]:
print(Value)

Instead of the entire list, you see just 2 and 3 as outputs, printed on separate lines.
The range has two values separated by a colon. However, the values are optional.
For example, ListB[:3] would output [1, 2, 3].When you leave out a value, the
range starts at the beginning or the end of the list, as appropriate.

CHAPTER 4 Introducing Python for Algorithm Programming 89

REMEMBER

Sometimes you need to process two lists in parallel. The simplest method of doing
this is to use the zip() function. Here’s an example of the zip() function in
action:

for Valuel, Value2 in zip(ListA, ListB):
print(Valuel, '\t',6 Value2)

This code processes both ListA and ListB at the same time. The processing ends
when the for loop reaches the shortest of the two lists. In this case, you see the
following:

Orange 1
Yellow 2
Green 8
Brown 4

This is the tip of the iceberg. You see a host of iterator types used throughout the
book. The idea is to enable you to list just the items you want, rather than all the
items in a list or other data structure. Some of the iterators used in upcoming
chapters are a little more complicated than what you see here, but this is an
important start.

Indexing Data Using Dictionaries

90

A dictionary is a special kind of sequence that uses a name and value pair. The use
of a name makes it easy to access particular values with something other than a
numeric index. To create a dictionary, you enclose name and value pairs in curly
brackets. Create a test dictionary by typing MyDict = {'Orange':1, 'Blue':2,
'Pink':3} and pressing Enter.

To access a particular value, you use the name as an index. For example, type
MyDict[‘Pink’] and press Enter to see the output value of 3. The use of dictionar-
ies as data structures makes it easy to access incredibly complex data sets using
terms that everyone can understand. In many other respects, working with a
dictionary is the same as working with any other sequence.

Dictionaries do have some special features. For example, type MyDict.keys() and
press Enter to see a list of the keys. You can use the values() function to see the
list of values in the dictionary.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Using matrixes and vectors to
perform calculations

» Obtaining the correct combinations

» Employing recursive techniques to
obtain specific results

» Considering ways to speed
calculations

Chapter 5

Performing Essential
Data Manipulations
Using Python

hapter 4 discusses the use of Python as a means for expressing in concrete

terms those arcane symbols often used in mathematical representations of

algorithms. In that chapter, you discover the various language constructs
used to perform tasks in Python. However, simply knowing how to control a
language by using its constructs to perform tasks isn’t enough. The goal of
mathematical algorithms is to turn one kind of data into another kind of data.
Manipulating data means taking raw input and doing something with it to achieve
a desired result. (As with data science, this is a topic covered in Python for Data
Science For Dummies, by John Paul Mueller and Luca Massaron [Wiley].) For
example, until you do something with traffic data, you can’t see the patterns that
emerge that tell you where to spend additional money in improvements. The
traffic data in its raw form does nothing to inform you — you must manipulate it
to see the pattern in a useful manner. Therefore, those arcane symbols are useful
after all. You use them as a sort of machine to turn raw data into something
helpful, which is what you discover in this chapter.

CHAPTER 5 Performing Essential Data Manipulations Using Python o1

In times past, people actually had to perform the various manipulations to make
data useful by hand, which required advanced knowledge of math. Fortunately,
you can find Python packages to perform most of these manipulations using a
little code. You don’t have to memorize arcane manipulations anymore — just
know which Python features to use. That’s what this chapter helps you achieve.
You discover the means to perform various kinds of data manipulations using
easily accessed Python packages designed especially for the purpose. The chapter
begins with vector and matrix manipulations. Later sections discuss techniques
such as recursion that can make the tasks even simpler and perform some tasks
that are nearly impossible using other means. You also discover how to speed up
the calculations so that you spend less time manipulating the data and more time
doing something really interesting with it, such as discovering just how to keep
quite so many traffic jams from occurring.

Performing Calculations Using
Vectors and Matrixes

To perform useful work with Python, you often need to work with larger amounts
of data that comes in specific forms. These forms have odd-sounding names, but
the names are quite important. The three terms you need to know for this chapter
are as follows:

¥ Scalar: A single base data item. For example, the number 2 shown by itself
is a scalar.

3 Vector: A one-dimensional array (essentially a list) of data items. For example,
an array containing the numbers 2, 3, 4, and 5 would be a vector. You access
items in a vector using a zero-based index, a pointer to the item you want. The
item at index 0O is the first item in the vector, which is 2 in this case.

¥ Matrix: A two-or-more-dimensional array (essentially a table) of data items.
For example, an array containing the numbers 2, 3, 4, and 5 in the first row
and 6, 7, 8, and 9 in the second row is a matrix. You access items in a matrix
using a zero-based row-and-column index. The item at row O, column 0 is the
first item in the matrix, which is 2 in this case.

Python provides an interesting assortment of features on its own, as described in
Chapter 4, but you’d still need to do a lot of work to perform some tasks. To reduce
the amount of work you do, you can rely on code written by other people and
found in packages. The following sections describe how to use the NumPy package
to perform various tasks on scalars, vectors, and matrixes.

092 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

TIP

Understanding scalar and vector
operations

The NumPy package provides essential functionality for scientific computing in
Python. To use numpy, you import it using a command such as import numpy
as np. Now you can access numpy using the common two-letter abbreviation np.

Python provides access to just one data type in any particular category. For exam-
ple, if you need to create a variable that represents a number without a decimal
portion, you use the integer data type. Using a generic designation like this is use-
ful because it simplifies code and gives the developer a lot less to worry about.
However, in scientific calculations, you often need better control over how data
appears in memory, which means having more data types, something that numpy
provides for you. For example, you might need to define a particular scalar as a
short (a value that is 16 bits long). Using numpy, you could define it as myShort =
np.short(15). You could define a variable of precisely the same size using thenp.
int16 function. The NumPy package provides access to a side assortment of data
types described at https://docs.scipy.org/doc/numpy/reference/arrays.
scalars.html.

Use the numpy array function to create a vector. For example, myVect = np.
array([1, 2, 3, 4]) creates a vector with four elements. In this case, the vector
contains standard Python integers. You can also use the arange function to pro-
duce vectors, such as myVect = np.arange(1, 10, 2), which fills myVect with
array([1, 3, 5, 7, 9]). The first input tells the starting point, the second the
stopping point, and the third the step between each number. A fourth argument
lets you define the data type for the vector. You can also create a vector with a
specific data type. All you need to do is specify the data type like this: myVect =
np.array(np.int16([1, 2, 3, 4])) to fill myVect with a vector like this:
array([1, 2, 3, 4], dtype=inti16).

In some cases, you need special numpy functions to create a vector (or a matrix) of
a specific type. For example, some math tasks require that you fill the vector with
ones. In this case, you use the ones function like this: myVect = np.ones(4,
dtype=np.int16) to fill myVect with ones of specific data types like this:
array([1, 1, 1, 1], dtype=int16). You can also use a zeros function to fill a
vector with zeros.

You can perform basic math functions on vectors as a whole, which makes this
incredibly useful and less prone to errors that can occur when using programming
constructs such as loops to perform the same task. For example, myVect + 1 pro-
duces an output of array([2, 3, 4, 5]) when working with standard Python
integers. If you choose to work with the numpy int16 data type, myVect + 1
produces array([2, 3, 4, 5], dtype=int16). Note that the output tells you
specifically which data type is in use. As you might expect, myVect - 1 produces

CHAPTER 5 Performing Essential Data Manipulations Using Python 93

https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html

an output of array([@, 1, 2, 3]).You can even use vectors in more complex
math scenarios, such as 2 *x myVect, where the output is array([2, 4, 8,
16], dtype=int32). When used in this manner, however, numpy often assigns a
specific type to the output, even when you define a vector using standard Python
integers.

As a final thought on scalar and vector operations, you can also perform both logi-
cal and comparison tasks. For example, the following code performs comparison
operations on two arrays:

a = np.array([1, 2, 3, 4])
b = np.array([2, 2, 4, 4])
a ==

array([False, True, False, True], dtype=bool)

ac<b
array([True, False, True, False], dtype=bool)

Starting with two vectors, a and b, the code checks whether the individual ele-
ments in a equal those in b. In this case, a[@] doesn’t equal b[@]. However, a[1]
does equal b[1]. The output is a vector of type bool that contains true or
false values based on the individual comparisons. Likewise, you can check for
instances when a < b and produce another vector containing the truth-values in
this instance.

Logical operations rely on special functions. You check the logical output of the
Boolean operators AND, OR, XOR, and NOT. Here is an example of the logical
functions:

Q
1l

np.array([True, False, True, False])
np.array([True, True, False, False])

o
1l

np.logical_or(a, b)
array([True, True, True, False], dtype=bool)

np.logical_and(a, b)
array([True, False, False, False], dtype=bool)

np.logical_not(a)
array([False, True, False, True], dtype=bool)

np.logical_xor(a, b)
array([False, True, True, False], dtype=bool)

94 PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

AN

WARNING

You can also use numeric input to these functions. When using numeric input, a 0
is false and a 1 is true. As with comparisons, the functions work on an element-
by-element basis even though you make just one call. You can read more about the
logic functions at https://docs.scipy.org/doc/numpy-1.10.0/reference/
routines.logic.html.

Performing vector multiplication

Adding, subtracting, or dividing vectors occurs on an element-by-element basis,
as described in the previous section. However, when it comes to multiplication,
things get a little odd. In fact, depending on what you really want to do, things can
become quite odd indeed. Consider the sort of multiplication discussed in the pre-
vious section. Both myVect * myVect and np.multiply(myVect, myVect) pro-
duce an element-by-element output of array([1, 4, 9, 16]).

Unfortunately, an element-by-element multiplication can produce incorrect
results when working with algorithms. In many cases, what you really need is a dot
product, which is the sum of the products of two number sequences. When working
with vectors, the dot product is always the sum of the individual element-by-
element multiplications and results in a single number. For example, myVect.
dot(myVect) results in an output of 30. If you sum the values from the element-
by-element multiplication, you find that they do indeed add up to 30. The discussion
at https://www.mathsisfun.com/algebra/vectors-dot-product.html tells you
about dot products and helps you understand where they might fit in with algorithms.
You can learn more about the linear algebra manipulation functions for numpy at
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html.

Creating a matrix is the right way to start

Many of the same techniques you use with vectors also work with matrixes. To
create a basic matrix, you simply use the array function as you would with a vec-
tor, but you define additional dimensions. A dimension is a direction in the matrix.
For example, a two-dimensional matrix contains rows (one direction) and col-
umns (a second direction). The array call myMatrix = np.array([[1,2,3],
[4,5,6], [7,8,9]]) produces a matrix containing three rows and three columns,
like this:

array([[1, 2, 3],

CHAPTER 5 Performing Essential Data Manipulations Using Python 95

https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

96

TIP

REMEMBER

Note how you embed three lists within a container list to create the two dimen-
sions. To access a particular array element, you provide a row and column index
value, such as myMatrix[@, @] to access the first value of 1. You can produce
matrixes with any number of dimensions using a similar technique. For example,
myMatrix = np.array([[[1,2], [83,4]], [[5,6], [7,8]]1]) produces a three-
dimensional matrix with an x, y, and z axis that looks like this:

array([[[1, 2]

In this case, you embed two lists, within two container lists, within a single con-
tainer list that holds everything together. In this case, you must provide an x, y,
and z index value to access a particular value. For example, myMatrix[Q, 1, 1]
accesses the value 4.

In some cases, you need to create a matrix that has certain start values. For
example, if you need a matrix filled with ones at the outset, you can use the ones
function. The call to myMatrix = np.ones([4,4], dtype=np.int32) produces a
matrix containing four rows and four columns filled with int32 values, like this:

array([[1,
[
[
[

(RGN
NN

Likewise, a call to myMatrix = np.ones([4,4,4], dtype=np.bool) will create a
three-dimensional array. This time, the matrix will contain Boolean values of
True. There are also functions for creating a matrix filled with zeros, the identity
matrix, and for meeting other needs. You can find a full listing of vector
and matrix array-creation functions at https://docs.scipy.org/doc/numpy/
reference/routines.array-creation.html.

The NumPy package supports an actual matrix class. The matrix class supports
special features that make it easier to perform matrix-specific tasks. You discover
these features later in the chapter. For now, all you really need to know is how to
create a matrix of the matrix data type. The easiest method is to make a call simi-
lar to the one you use for the array function, but using the mat function instead,
such as myMatrix = np.mat([[1,2,3], [4,5,6], [7,8,9]]), which produces
the following matrix:

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A\

WARNING

A\

WARNING

matrix([[1, 2, 3],

You can also convert an existing array to a matrix using the asmatrix function.
Use the asarray function to convert a matrix object back to an array form.

The only problem with the matrix class is that it works on only two-dimensional
matrixes. If you attempt to convert a three-dimensional matrix to the matrix
class, you see an error message telling you that the shape is too large to be a
matrix.

Multiplying matrixes

Multiplying two matrixes involves the same concerns as multiplying two vectors
(as discussed in the “Performing vector multiplication” section, earlier in this
chapter). The following code produces an element-by-element multiplication of
two matrixes.

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[4,5,6]])
axb

array([[1, 4, 9],
[16, 25, 36]])

Note that a and b are the same shape, two rows and three columns. To perform an
element-by-element multiplication, the two matrixes must be the same shape.
Otherwise, you see an error message telling you that the shapes are wrong. As
with vectors, themultiply function also produces an element-by-element result.

Dot products work completely differently with matrixes. In this case, the number
of columns in matrix a must match the number of rows in matrix b. However, the
number of rows in matrix a can be any number, and the number of columns in
matrix b can be any number as long as you multiply a by b. For example, the fol-
lowing code produces a correct dot product:

a = np.array([[1,2,3],[4,5,6]])
np.array([[1,2,3],[8,4,5],[5,6,7]])

o
1l

a.dot(b)
array([[22, 28, 34],
[49, 64, T9]])

CHAPTER 5 Performing Essential Data Manipulations Using Python 97

Note that the output contains the number of rows found in matrix a and the num-
ber of columns found in matrix b. So how does this all work? To obtain the value
found in the output array at index [0,0] of 22, you sum the values of a[0,0]*b[0,0]
(which is 1), a[0,1]*b[1,0] (which is 6), and a[0,2]*b[2,0] (which is 15) to obtain
the value of 22. The other entries work precisely the same way.

straightforward. For example, multiplication works precisely as you expect it
should. The following code produces a dot product using the matrix class:

An advantage of using the NumPy matrix class is that some tasks become more

a = np.mat([[1,2,3],[4,5,6]])
b = np.mat([[1,2,3],[8,4,5],[5,6,7]])
axb

matrix([[22, 28, 34],
[49, 64, 79]])

The output with the * operator is the same as using the dot function with an
array. This example also points out that you must know whether you’re using an
array or a matrix object when performing tasks such as multiplying two matrixes.

To perform an element-by-element multiplication using two matrix objects, you
must use the numpy multiply function.

TIP

Defining advanced matrix operations

This book takes you through all sorts of interesting matrix operations, but you use
some of them commonly, which is why they appear in this chapter. When working
with arrays, you sometimes get data in a shape that doesn’t work with the algo-
rithm. Fortunately, numpy comes with a special reshape function that lets you put
the data into any shape needed. In fact, you can use it to reshape a vector into a
matrix, as shown in the following code:

changelt = np.array([1,2,3,4,5,6,7,8])

changelt
array([1, 2, 3, 4, 5, 6, 7, 8])

changelt.reshape(2,4)

array([[1, 2, 3, 4],
[5, 6, 7, 8]1)

98 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

changelt.reshape(2,2,2)
array([[[1, 2],

(3, 4]1,
[[5, 6],
(7, 8]11)

The starting shape of changelt is a vector, but using the reshape function turns
it into a matrix. In addition, you can shape the matrix into any number of dimen-
sions that work with the data. However, you must provide a shape that fits with
the required number of elements. For example, calling changeIt.reshape(2,3,2)
will fail because there aren’t enough elements to provide a matrix of that size.

You may encounter two important matrix operations in some algorithm formula-
tions. They are the transpose and inverse of a matrix. Transposition occurs when a
matrix of shape n x m is transformed into a matrix m x n by exchanging the rows
with the columns. Most texts indicate this operation by using the superscript T, as
in AT. You see this operation used most often for multiplication in order to obtain
the right dimensions. When working with numpy, you use the transpose function
to perform the required work. For example, when starting with a matrix that has
two rows and four columns, you can transpose it to contain four rows with two
columns each, as shown in this example:

changelt
array([[1, 2, 3, 4],
[5, 6, 7, 8]])

np.transpose(changelt)
array([[1, 5],

[2, 6],
[3, 7]
(4, 8]

=3

1)

@

You apply matrix inversion to matrixes of shape m x m, which are square matrixes
that have the same number of rows and columns. This operation is quite important
because it allows the immediate resolution of equations involving matrix
multiplication, such as y=bX, where you have to discover the values in the vector b.
Because most scalar numbers (exceptions include zero) have a number whose
multiplication results in a value of 1, the idea is to find a matrix inverse whose
multiplication will result in a special matrix called the identity matrix. To see an
identity matrix in numpy, use the identity function like this:

np.identity(4)
array([[1'/ O'l @'I Q']I

CHAPTER 5 Performing Essential Data Manipulations Using Python 99

Note that an identity matrix contains all ones on the diagonal. Finding the inverse
of a scalar is quite easy (the scalar number n has an inverse of n-* that is 1/n). It’s
a different story for a matrix. Matrix inversion involves quite a large number of
computations. The inverse of a matrix A is indicated as A-'. When working with
numpy, you use the 1inalg. inv function to create an inverse. The following exam-
ple shows how to create an inverse, use it to obtain a dot product, and then com-
pare that dot product to the identity matrix by using the allclose function.

np.array([[1,2], [3,4]])
np.linalg.inv(a)

[o2)]
I

np.allclose(np.dot(a,b), np.identity(2))
True

Sometimes, finding the inverse of a matrix is impossible. When a matrix cannot
be inverted, it is referred to as a singular matrix or a degenerate matrix. Singular
matrixes aren’t the norm; they’re quite rare.

Creating Combinations the Right Way

100

Shaping data often involves viewing the data in multiple ways. Data isn’t simply a
sequence of numbers — it presents a meaningful sequence that, when ordered the
proper way, conveys information to the viewer. Creating the right data combina-
tions by manipulating data sequences is an essential part of making algorithms do
what you want them to do. The following sections look at three data-shaping
techniques: permutations, combinations, and repetitions.

Distinguishing permutations

When you receive raw data, it appears in a specific order. The order can represent
just about anything, such as the log of a data input device that monitors some-
thing like a production line. Perhaps the data is a series of numbers representing
the number of products made at any particular moment in time. The reason that
you receive the data in a particular order is important, but perhaps that order
doesn’t lend itself to obtaining the output you need from an algorithm. Perhaps
creating a data permutation, a reordering of the data so that it presents a different
view, will help achieve a desired result.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

You can view permutations in a number of ways. One method of viewing a permu-
tation is as a random presentation of the sequence order. In this case, you can use
the numpy random.permutation function, as shown here:

a = np.array([1,2,3])
np.random.permutation(a)
array([2, 3, 1])

The output on your system will likely vary from the output shown. Each time you
run this code, you receive a different random ordering of the data sequence, which
comes in handy with algorithms that require you to randomize the dataset to
obtain the desired results. For example, sampling is an essential part of data ana-
lytics, and the technique shown is an efficient way to perform this task.

Another way to view the issue is the need to obtain all the permutations for a
dataset so that you can try each one in turn. To perform this task, you need to
import the itertools package. The following code shows a technique you can use
to obtain a list of all the permutations of a particular vector:

from itertools import permutations

a = np.array([1,2,3])

for p in permutations(a):

print(p)
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 8, 1)
(3, 1, 2)
(3, 2, 1)

To save the list of sets, you could always create a blank list and rely on the append
function to add each set to the list instead of printing the items one at a time, as
shown in the code. The resulting list could serve as input to an algorithm designed
to work with multiple sets. You can read more about itertools at https://docs.
python.org/3/library/itertools.html.

Shuffling combinations

In some cases, you don’t need an entire dataset; all you really need are a few of the
members in combinations of a specific length. For example, you might have a
dataset containing four numbers and want only two number combinations from it.

CHAPTER 5 Performing Essential Data Manipulations Using Python 101

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html

102

Q

TIP

(The ability to obtain parts of a dataset is a key function for generating a fully con-
nected graph, which is described in Part 3 of the book.) The following code shows
how to obtain such combinations:

from itertools import combinations

a = np.array([1,2,3,4])

for comb in combinations(a, 2):

print(comb)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)

The output contains all the possible two-number combinations of a. Note that this
example uses the itertools combinations function (the permutations function
appears in the previous section). Of course, you might not need all those combina-
tions; perhaps a random subset of them would work better. In this case, you can
rely on the random.sample function to come to your aid, as shown here:

pool = []

for comb in combinations(a, 2):
pool . append(comb)

random.sample(pool, 3)
[(1, 4), (3, 4), (1, 2)]

The precise combinations you see as output will vary. However, the idea is that
you’ve limited your dataset in two ways. First, you’re not using all the data ele-
ments all the time, and second, you’re not using all the possible combinations of
those data elements. The effect is to create a relatively random-looking set of data
elements that you can use as input to an algorithm.

Another variation of this theme is to create a complete list but randomize the
order of the elements. The act of randomizing the list order is shuffling, and you
use the random. shuffle function to do it. In fact, Python provides a whole host of
randomizing methods that you can see athttps://docs.python.org/3/library/
random.html. Many of the later examples in this book also rely on randomization
to help obtain the correct output from algorithms.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Facing repetitions

Repeated data can unfairly weight the output of an algorithm so that you get inac-
curate results. Sometimes you need unique values to determine the outcome of a
data manipulation. Fortunately, Python makes it easy to remove certain types of
repeated data. Consider this example:

a = np.array([1,2,3,4,5,6,6,7,7,1,2,3])
b = np.array(list(set(a)))
b

array([1, 2, 8, 4, 5, 6, T])

with plenty of repetitions. In Python, a set never contains repeated data. Conse-
quently, by converting the list in a to a set and then back to a 1ist, and then
rememser placing that list in an array, you obtain a vector that has no repeats.

@ In this case, a begins with an assortment of numbers in no particular order and

Getting the Desired Results
Using Recursion

Recursion is an elegant method of solving many computer problems that relies on
the capability of a function to continue calling itself until it satisfies a particular
condition. The term recursion actually comes from the Latin verb recurrere, which
means to run back.

When you use recursion, you solve a problem by calling the same function multiple
times but modifying the terms under which you call it. The main reason for using
recursion is that it provides an easier way to solve problems when working with
some algorithms because it mimics the way a human would solve it. Unfortunately,
recursion is not an easy tool because it requires some effort to understand how to
build a recursive routine and it can cause out-of-memory problems on your
computer if you don’t set some memory settings. The following sections detail
how recursion works and give you an example of how recursion works in Python.

Explaining recursion

Many people have a problem using recursion because they can’t easily visualize
how it works. In most cases, you call a Python function, it does something, and

CHAPTER 5 Performing Essential Data Manipulations Using Python 103

FIGURE 5-1:

In the recursion
process, a
function
continuously calls
itself until it
meets a
condition.

then it stops. However, in recursion, you call a Python function, it does some-
thing, and then it calls itself repeatedly until the task reaches a specific
condition — but all those previous calls are still active. The calls unwind them-
selves one at a time until the first call finally ends with the correct answer, and
this unwinding process is where most people encounter a problem. Figure 5-1
shows how recursion looks when using a flow chart.

—————— Function Heading /

)
N >

v

Perform
Required
Preprocessing

Call No .~ Ending
Function with | €— Condition
Modified Arguments ™~ - Satisfied?

\\\ ',//

~_Yes

Perform
Required
Post-processing

Notice the conditional in the center. To make recursion work, the function must
have such a conditional or it could become an endless loop. The conditional deter-
mines one of two things:

¥ The conditions for ending recursion haven't been met, so the function must
call itself again.

¥ The conditions for ending recursion have been met, so the function returns a
final value that is used to calculate the ending result.

104 PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir gl —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

When a function calls itself, it doesn’t use the same arguments that were passed
to it. If it continuously used the same arguments, the condition would never
change and the recursion would never end. Consequently, recursion requires that
subsequent calls to the function must change the call arguments in order to bring
the function closer to an ending solution.

One of the most common examples of recursion for all programming languages is
the calculation of a factorial. A factorial is the multiplication of a series of numbers
between a starting point and an ending point in which each number in the series
is one less than the number before it. For example, to calculate 5! (read as five
factorial) you multiple 5 * 4 * 3 * 2 * 1, The calculation represents a perfect and
simple example of recursion. Here’s the Python code you can use to perform the
calculation. (You can find this code in the A4D; ©5; Recursion.ipynb file on the
Dummies site as part of the downloadable code; see the Introduction for details.)

def factorial(n):
print("factorial called with n = ", str(n))
if n==1or n ==
print("Ending condition met.")
return 1
else:
return n x factorial(n-1)

print(factorial(5))

factorial called with
factorial called with
factorial called with
factorial called with

3535 3 3 35 S
1l
=N W s o

factorial called with
Ending condition met.
120

The code meets the ending condition when n == 1. Each successive call to
factorial uses factorial(n-1), which reduces the starting argument by 1. The
output shows each successive call to factorial and the meeting of the final
condition. The result, 120, equals 5! (five factorial).

It’s important to realize that there isn’t just one method for using recursion to solve
a problem. As with any other programming technique, you can find all sorts of ways
to accomplish the same thing. For example, here’s another version of the factorial
recursion that uses fewer lines of code but effectively performs the same task:

def factorial(n):
print("factorial called with n = ", str(n))

CHAPTER 5 Performing Essential Data Manipulations Using Python 105

106

REMEMBER

ifn> 1:

return n x factorial(n-1)
print("Ending condition met.")
return 1

print(factorial(5))

factorial called with
factorial called with
factorial called with
factorial called with
factorial called with
Ending condition met.
120

> 3 3 35 O
1l
=N W s O

Note the difference. Instead of checking the ending condition, this version checks
the continuation condition. As long as n is greater than 1, the code will continue
to make recursive calls. Even though this code is shorter than the previous ver-
sion, it’s also less clear because now you must think about what condition will end
the recursion.

Eliminating tail call recursion

Many forms of recursion rely on a tail call. In fact, the example in the previous
section does. A tail call occurs any time the recursion makes a call to the function
as the last thing before it returns. In the previous section, the line return n x
factorial(n-1) is the tail call.

Tail calls aren’t necessarily bad, and they represent the manner in which most
people write recursive routines. However, using a tail call forces Python to keep
track of the individual call values until the recursion rewinds. Each call consumes
memory. At some point, the system will run out of memory and the call will fail,
causing your algorithm to fail as well. Given the complexity and huge datasets
used by some algorithms today, tail calls can cause considerable woe to anyone
using them.

With a little fancy programming, you can potentially eliminate tail calls from your
recursive routines. You can find a host of truly amazing techniques online, such as
the use of a trampoline, as explained at http://blog.moertel.com/posts/2013-
06-12-recursion-to-iteration-4-trampolines.html. However, the simplest
approach to take when you want to eliminate recursion is to create an iterative
alternative that performs the same task. For example, here is a factorial func-
tion that uses iteration instead of recursion to eliminate the potential for memory
issues:

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

http://blog.moertel.com/posts/2013-06-12-recursion-to-iteration-4-trampolines.html
http://blog.moertel.com/posts/2013-06-12-recursion-to-iteration-4-trampolines.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

def factorial(n):
print("factorial called with n = ", str(n))
result =1
while n > 1:
result = result % n
n=n-1
print("Current value of n is ", str(n))
print("Ending condition met.")
return result

print(factorial(5))

factorial called with n = 5
Current value of n is
Current value of n is
Current value of n is

=N W

Current value of n is
Ending condition met.
120

The basic flow of this function is the same as the recursive function. A while loop
replaces the recursive call, but you still need to check for the same condition and
continue looping until the data meets the condition. The result is the same. How-
ever, replacing recursion with iteration is nontrivial in some cases, as explored in
the example at http://blog.moertel .com/posts/2013-06-03-recursion-to-
iteration-3.html.

Performing Tasks More Quickly

Obviously, getting tasks done as quickly as possible is always ideal. However, you
always need to carefully weigh the techniques you use to achieve this. Trading a
little memory to perform a task faster is great as long as you have the memory to
spare. Later chapters in the book explore all sorts of ways to perform tasks faster,
but you can try some essential techniques no matter what sort of algorithm you’re
working with at any given time. The following sections explore some of these
techniques.

Considering divide and conquer

Some problems look overwhelming when you start them. Take, for example, writ-
ing a book. If you consider the entire book, writing it is an overwhelming task.
However, if you break the book into chapters and consider just one chapter, the

CHAPTER 5 Performing Essential Data Manipulations Using Python 107

http://blog.moertel.com/posts/2013-06-03-recursion-to-iteration-3.html
http://blog.moertel.com/posts/2013-06-03-recursion-to-iteration-3.html

108

©

REMEMBER

problem seems a little more doable. Of course, an entire chapter can seem a bit
daunting, too, so you break the task down into first-level headings, which seems
even more doable, but still not quite doable enough. The first-level headings could
contain second-level headings and so on until you have broken down the problem
of writing about a topic into short articles as much as you can. Even a short article
can seem too hard, so you break it down into paragraphs, then into sentences, and
finally into individual words. Writing a single word isn’t too hard. So, writing a
book comes down to writing individuals words —lots of them. This is how divide
and conquer works. You break a problem down into smaller problems until you
find a problem that you can solve without too much trouble.

Computers can use the divide-and-conquer approach as well. Trying to solve a
huge problem with an enormous dataset could take days — assuming that the
task is even doable. However, by breaking the big problem down into smaller
pieces, you can solve the problem much faster and with fewer resources. For
example, when searching for an entry in a database, searching the entire database
isn’t necessary if you use a sorted database. Say that you’re looking for the word
Hello in the database. You can begin by splitting the database in half (letters A
through M and letters N through Z). The numeric value of the H in Hello (a value of
72 when using a standard ASCII table) is less than M (a value of 77) in the alpha-
bet, so you look at the first half of the database rather than the second. Splitting
the remaining half again (letters A through G and letters H through M), you now
find that you need the second half of the remainder, which is now only a quarter
of the database. Further splits eventually help you find precisely what you want by
searching only a small fraction of the entire database. You call this search approach
a binary search. The problem becomes one of following these steps:

1. Split the content in question in half.
2. Compare the keys for the content with the search term.
3. Choose the half that contains the key.

4. Repeat Steps 1 through 3 until you find the key.

Most divide-and-conquer problems follow a similar approach, even though some
of these approaches become quite convoluted. For example, instead of just split-
ting the database in half, you might split it into thirds in some cases. However, the
goal is the same in all cases: Divide the problem into a smaller piece and deter-
mine whether you can solve the problem using just that piece as a generalized
case. After you find the generalized case that you know how to solve, you can use
that piece to solve any other piece as well. The following code shows an extremely
simple version of a binary search that assumes that you have the list sorted. (You
can find this code in the A4D; ©5; Binary Search. ipynb file on the Dummies site
as part of the downloadable code; see the Introduction for details.)

PART 1 Getting Started

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

def search(searchList, key):
mid = int(len(searchList) / 2)
print("Searching midpoint at ", str(searchList[mid]))

if mid == O:
print("Key Not Found!")
return key

elif key == searchlList[mid]:
print("Key Found!")
return searchlList[mid]

elif key > searchList[mid]:
print("searchList now contains ",
searchList[mid:len(searchList)])

search(searchList[mid:len(searchlList)], key)

else:
print("searchList now contains ",
searchList[@:mid])

search(searchList[@:mid], key)

alList = list(range(1, 21))
search(alList, 5)

Searching midpoint at 11

searchlList now contains [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Searching midpoint at 6

searchlList now contains [1, 2, 3, 4, 5]

Searching midpoint at 3

searchList now contains [3, 4, 5]

Searching midpoint at 4

searchList now contains [4, 5]

Searching midpoint at 5

Key Found!

This recursive approach to the binary search begins with aList containing the
numbers 1 through 20. It searches for a value of 5 in aList. Each iteration of the
recursion begins by looking for the list’s midpoint, mid, and then using that mid-
point to determine the next step. When the key matches the midpoint, the value
is found in the list and the recursion ends.

CHAPTER 5 Performing Essential Data Manipulations Using Python 109

110

REMEMBER

A\

WARNING

Note that this example makes one of two recursive calls. When key is greater than
the midpoint value of the existing list, searchList[mid], the code calls search
again with just the right side of the remaining list. In other words, every call to
search uses just half the list found in the previous call. When key is less than or
equal to searchList[mid], search receives the left half of the existing list.

The list may not contain a search value, so you must always provide an escape
method for the recursion or the stack will fill, resulting in an error message. In
this case, the escape occurs when mid == @, which means that there is no more
searchList to search. For example, if you change search(aList, 5) to
search(aList, 22), you obtain the following output instead:

Searching midpoint at 11

searchList now contains [11, 12, 13, 14, 15, 16, 17, 18,
19, 20]

Searching midpoint at 16

searchList now contains [16, 17, 18, 19, 20]
Searching midpoint at 18

searchlList now contains [18, 19, 20]
Searching midpoint at 19

searchList now contains [19, 20]

Searching midpoint at 20

searchList now contains [20]

Searching midpoint at 20

Key Not Found!

Note also that the code looks for the escape condition before performing any other
work to ensure that the code doesn’t inadvertently cause an error because of the
lack of searchList content. When working with recursion, you must remain pro-
active or endure the consequences later.

Distinguishing between different
possible solutions

Recursion is part of many different algorithmic programming solutions, as you
see in the upcoming chapters. In fact, it’s hard to get away from recursion in
many cases because an iterative approach proves nonintuitive, cumbersome, and
time consuming. However, you can create a number of different versions of the
same solution, each of which has its own characteristics, flaws, and virtues.

PART 1 Getting Started

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

A\

WARNING

The solution that this chapter doesn’t consider is sequential search, because a
sequential search generally takes longer than any other solution you can employ.
In a best-case scenario, a sequential search requires just one comparison to com-
plete the search, but in a worst-case scenario, you find the item you want as the
last check. As an average, sequential search requires (n+1)/2 checks or O(n) time
to complete.

The binary search in the previous section does a much better job than a sequential
search does. It works on logarithmic time or O(log n). In a best-case scenario, it
takes only one check, as with a sequential search, but the output from the example
shows that even a worst-case scenario, where the value doesn’t even appear in the
list, takes only six checks rather than the 21 checks that a sequential search would
require.

This book covers a wide variety of search and sort algorithms because searching
and sorting represent two major categories of computer processing. Think about
how much time you spend Googling data each day. In theory, you might spend
entire days doing nothing but searching for data. Search routines work best with
sorted data, so you see the need for efficient search and sort routines. Fortunately,
you don’t have to spend hours trying to figure out which search and sort routines
work best. Sites such as Big-0 Cheat Sheet, http://bigocheatsheet.com/, pro-
vide you with the data needed to determine which solution performs best.

If you look at performance times alone, however, the data you receive can mislead
you into thinking that a particular solution will work incredibly well for your
application when in fact it won’t. You must also consider the kind of data you
work with, the complexity of creating the solution, and a host of other factors.
That’s why later examples in this book also consider the pros and cons of each
approach — the hidden dangers of choosing a solution that seems to have poten-
tial and then fails to produce the desired result.

CHAPTER 5 Performing Essential Data Manipulations Using Python 111

http://bigocheatsheet.com/

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Understanding
the Need to Sort
and Search

IN THIS PART ...

Use various Python data structures.
Work with trees and graphs.
Sort data to make algorithms work faster.

Search data to locate precisely the right information
quickly.

Employ hashing techniques to create smaller data
indexes.

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

Telegram Channel: @konkurcomputer

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Defining why data requires structure

» Working with stacks, queues, lists,
and dictionaries

» Using trees to organize data

» Using graphs to represent data with
relations

Chapter 6
Structuring Data

aw data is just that: raw. It’s not structured or cleaned in any way. You

might find some parts of it missing or damaged in some way, or simply that

it won’t work for your problem. In fact, you’re not entirely sure just what
you’re getting because it’s raw.

Before you can do anything with most data, you must structure it in some manner
so that you can begin to see what the data contains (and, sometimes, what it
doesn’t). Structuring data entails organizing it in some way so that all the data
has the same attributes, appearance, and components. For example, you might get
data from one source that contains dates in string form and another source that
uses date objects. To use the information, you must make the kinds of data match.
Data sources might also structure the data differently. One source might have the
last and first name in a single field; another source might use individual fields for
the same information. An important part of structuring data is organization. You
aren’t changing the data in any way — simply making the data more useful.
(Structuring data contrasts with remediating or shaping the data where you
sometimes do change values to convert one data type to another or experience a
loss of accuracy, such as with dates, when moving between data sources.)

Python provides access to a number of organizational structures for data. The
book uses these structures, especially stacks, queues, and dictionaries, for many
of the examples. Each data structure provides a different means of working with
the data and a different set of tools for performing tasks such as sorting the data
into a particular order. This chapter presents you with the most common
organizational methods, including both trees and graphs (both of which are so
important that they appear in their own sections).

CHAPTER 6 Structuring Data 115

Determining the Need for Structure

Structure is an essential element in making algorithms work. As shown in the
binary search example in Chapter 5, implementing an algorithm using structured
data is much easier than trying to figure out how to interpret the data in code. For
example, the binary search example relies on having the data in sorted order. Try-
ing to perform the required comparisons with unsorted data would require a lot

more effort and potentially prove impossible to implement. With

all this in mind,

you need to consider the structural requirements for the data you use with your

algorithms, as discussed in the following sections.

Making it easier to see the content

An essential need to meet as part of working with data is to understand the data
content. A search algorithm works only when you understand the dataset so that
you know what to search for using the algorithm. Looking for words when the
dataset contains numbers is an impossible task that always results in errors. Yet,
search errors due to a lack of understanding of dataset content are a common
occurrence even with the best search engines. Humans make assumptions about
dataset content that cause algorithms to fail. Consequently, the better you can see
and understand the content through structured formatting, the easier it becomes

to perform algorithm-based tasks successfully.

However, even looking at the content is often error prone when dealing with
humans and computers. For example, if you attempt to search for a number for-
matted as a string when the dataset contains the numbers formatted as integers,
the search will fail. Computers don’t automatically translate between strings and
integers as humans do. In fact, computers see everything as numbers, and strings
are only an interpretation imposed on the numbers by a programmer. Therefore,
when searching for "1" (the string), the computer sees it as a request for the
number 49 when using ASCII characters. To find the numeric value 1, you must

search for a 1 as an integer value.

phone number can appear in the form (555)555-1212. If you perform a search or

@ Structure also enables you to discover nuanced data details. For example, a tele-

other algorithm task using the form 1(555)555-1212, the search might fail because
rememser Of the addition of a 1 at the beginning of the search term. These sorts of issues
cause significant problems because most people see the two forms as equal, but
the computer doesn’t. The computer sees two completely different forms and
even sees them as being two different lengths. Trying to impose form on humans
rarely works and generally results in frustration that makes using the algorithm
even harder, so structure imposed through data manipulation becomes even more

important.

116 PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

Matching data from various sources

Interacting with data from a single source is one problem; interacting with data
from several sources is quite another. However, datasets today generally come
from more than one source, so you need to understand the complications that
using multiple data sources can cause. When working with multiple data sources,
you must do the following:

¥ Determine whether both datasets contain all the required data. Two design-
ers are unlikely to create datasets that contain precisely the same data, in the
same format, of the same type, and in the same order. Consequently, you
need to consider whether the datasets provide the data you need or whether
you need to remediate the data in some way to obtain the desired result, as
discussed in the next section.

¥ Check both datasets for data type issues. One dataset could have dates input
as strings, and another could have the dates input as actual date objects.
Inconsistencies between data types will cause problems for an algorithm that
expects data in one form and receives it in another.

¥ Ensure that all datasets place the same meaning on data elements. Data
created by one source might have a different meaning than data created by
another source. For example, the size of an integer can vary across sources,
so you might see a 16-bit integer from one source and a 32-bit integer from
another. Lower values have the same meaning, but the 32-bit integer can
contain larger values, which can cause problems with the algorithm. Dates can
also cause problems because they often rely on storing so many milliseconds
since a given date (such as JavaScript, which stores the number of milliseconds
since 01 January, 1970 UTC). The computer sees only numbers; humans add
meaning to these numbers so that applications interpret them in specific ways.

¥ Verify the data attributes. Data items have specific attributes, which is why
Chapter 4 tells you all about how Python interprets various data types.
Chapter 5 points out that this interpretation can change when using numpy.
In fact, you find that data attributes change between environments, and
developers can change them even more by creating custom data types. To
combine data from various sources, you must understand these attributes to
ensure that you interpret the data correctly.

The more time you spend verifying the compatibility of data from each of the
sources you want to use for a dataset, the less likely you are to encounter problems
when working with an algorithm. Data incompatibility issues don’t always appear
as outright errors. In some cases, an incompatibility can cause other issues, such
as errant results that look correct but provide misleading information.

CHAPTER 6 Structuring Data 117

18

Combining data from multiple sources may not always mean creating a new data-
set that looks precisely like the source datasets, either. In some cases, you create
data aggregates or perform other forms of manipulation to create new data from
the existing data. Analysis takes all sorts of forms, and some of the more exotic
forms can produce terrible errors when used incorrectly. For example, one data
source could provide general customer information and a second data source could
provide customer-buying habits. Mismatches between the two sources might
match customers with incorrect buying habit information and cause problems
when you try to market new products to these customers. As an extreme example,
consider what would happen when combining patient information from several
sources and creating combined patient entries in a new data source with all sorts
of mismatches. A patient without a history of a particular disease could end up
with records showing diagnosis and care of the disease.

Considering the need for remediation

After you find problems with your dataset, you need to remediate it so that the
dataset works properly with the algorithms you use. For example, when working
with conflicting data types, you must change the data types of each data source so
that they match and then create the single data source used with the algorithm.
Most of this remediation, although time consuming, is straightforward. You sim-
ply need to ensure that you understand the data before making changes, which
means being able to see the content in the context of what you plan to do with it.
However, you need to consider what to do in two special cases: data duplication
and missing data. The following sections show how to deal with these issues.

Dealing with data duplication

Duplicated data occurs for a number of reasons. Some of them are obvious. A user
could enter the same data more than once. Distractions cause people to lose their
place in a list or sometimes two users enter the same record. Some of the sources
are less obvious. Combining two or more datasets could create multiple records
when the data appears in more than one location. You could also create data dupli-
cations when using various data-shaping techniques to create new data from
existing data sources. Fortunately, packages such as Pandas let you remove dupli-
cate data, as shown in the following example. (You can find this code in the A4D;
06; Remediation.ipynb file on the Dummies site as part of the downloadable

’

code; see the Introduction for details.)
import pandas as pd
df = pd.DataFrame({'A': [0,0,0,0,0,1,0],

'B': [0,2,3,5,0,2,0],
'C': [0,3,4,1,0,2,0]})

PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

print(df, "\n")

df = df.drop_duplicates()

print(df)
A B C
@ 0 0 0
1 0 2 3
2 0 3 4
3 0 5 1
4 0 0 0
5 1 2 2
6 0 0 0
A B C
0@ 0 0 0
1 © 2 3
2 0 3 4
3 0 5 1
5 1 2 2

The drop_duplicates function removes the duplicate records found in rows 4 and
6 in this example. By reading your data from a source into a pandas DataFrame,
you can quickly remove the extra entries so that the duplicates don’t unfairly
weight the output of any algorithms you use.

Dealing with missing values

Missing values can also skew the results of an algorithm’s output. In fact, they can
cause some algorithms to react oddly or even raise an error. The point is that
missing values cause problems with your data, so you need to remove them. You
do have many options when working with missing values. For example, you could
simply set them to a standard value, such as 0 for integers. Of course, using a
standard setting could also skew the results. Another approach is to use the mean
of all the values, which tends to make the missing values not count. Using a mean
is the approach taken in the following example

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [0,0,1,None],
'B': [1,2,3,4],
‘C': [np.NAN,3,4,1]},
dtype=int)

CHAPTER 6 Structuring Data 119

120

REMEMBER

print(df, "\n")

values = pd.Series(df.mean(), dtype=int)
print(values, "\n")

df = df.fillna(values)

print(df)

A B C
(%] ©@ 1 NaN
1 0 2 &
2 1 3 4
3 None 4 1
A (%}
B 2
© 2

dtype: int32

W N =~
o~ 00 F
S W N -~
=W N Q

The fillna function enables you to get rid of the missing values whether they’re
not a number (NAN) or simply missing (None). You can supply the missing data
values in a number of forms. This example relies on a series that contains the
mean for each separate column of data (much as you would do when working with
a database).

Note that the code is careful not to introduce errors into the output by ensuring
that values is of the right data type. Normally, the mean function outputs
floating-point values, but you can force the series it fills into the right type.
Consequently, the output not only lacks missing values but also does contain val-
ues of the correct type.

Understanding other remediation issues

Remediation can take a number of other forms. Sometimes a user provides incon-
sistent or incorrect input. Applications don’t always enforce data input rules, so
users can enter incorrect state or region names. Misspellings also occur. Some-
times values are out of range or are simply impossible in a given situation. You
may not always be able to clean your data completely on the first try. Often, you
become aware of a problem by running the algorithm and noting that the results

PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

are skewed in some way or that the algorithm doesn’t work at all (even if it did
work on a subset of the data). When in doubt, check your data for potential reme-
diation needs.

Stacking and Piling Data in Order

©

REMEMBER

Python provides a number of storage methodologies, as discussed in Chapter 4. As
you’ve already seen in Chapter 5, and this chapter, packages often offer additional
storage methods. Both NumPy and Pandas provide storage alternatives that you
might consider when working through various data structuring problems.

A common problem of data storage isn’t just the fact that you need to store the
data, but that you must store it in a particular order so that you can access it when
necessary. For example, you may want to ensure that the first item you place on a
stack of items to process is also the first item you actually do process. With this
data-ordering issue in mind, the following sections describe the standard Python
methods for ensuring orderly data storage that let you have a specific processing
arrangement.

Ordering in stacks

A stack provides last in/first out (LIFO) data storage. The NumPy package provides
an actual stack implementation. In addition, Pandas associates stacks with objects
such as the DataFrame. However, both packages hide the stack implementation
details, and seeing how a stack works really does help. Consequently, the follow-
ing example implements a stack using a standard Python list. (You can find this
code in the A4D; ©6; Stacks, Queues, and Dictionaries.ipynb file on the
Dummies site as part of the downloadable code; see the Introduction for details.)

MyStack = []
StackSize = 3

def DisplayStack():
print("Stack currently contains:")
for Item in MyStack:
print(Item)

def Push(Value):

if len(MyStack) < StackSize:
MyStack .append(Value)

CHAPTER 6 Structuring Data 121

else:
print("Stack is full!")

def Pop():
if len(MyStack) > O:
print("Popping: ", MyStack.pop())
else:
print("Stack is empty.")

Push(1)
Push(2)
Push(3)
DisplayStack()

Push(4)

Pop()
DisplayStack()

Pop()
Pop()
Pop()

Stack currently contains:

1

2

3

Stack is fulll!

Popping: 3

Stack currently contains:
1

2

Popping: 2

Popping: 1

Stack is empty.

The example ensures that the stack maintains the integrity of the data and works
with it in the order you expect. The code relies on simple 1ist manipulation, but
it’s effective in providing a stack representation that you can use for any need.

Python lists are ordered lists of data values that are easy and intuitive to use. From

@ an algorithm perspective, they often don’t perform well because they store the list
elements in computer memory and access them using an index and memory pointers

TP (a number that provides the memory address of the data). They work exactly the
way a book index or a package does. Lists don’t have knowledge of their content.

122 PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

When your application makes a data request, the list scans through all its items,
which is even slower. When data is scattered across your computer’s memory, lists
must gather the data from each location individually and slowing access more.

Using queues

Unlike stacks, queues are first in/first out (FIFO) data structures. As with stacks,
you can find predefined implementations in many packages, including both NumPy
and Pandas. Fortunately, you can also find a specific queue implementation in
Python, which you find demonstrated in the following code:

import queue

MyQueue = queue.Queue(3)

n

print("Queue empty: ", MyQueue.empty())
MyQueue.put (1)
MyQueue.put(2)
MyQueue . put(3)

print("Queue full: ", MyQueue.full())
print("Popping: ", MyQueue.get())
print("Queue full: ", MyQueue.full())
print("Popping: ", MyQueue.get())
print("Popping: ", MyQueue.get())

print("Queue empty: ", MyQueue.empty())

Queue empty: True
Queue full: True

Popping: 1
Queue full: False
Popping: 2
Popping: 3

Queue empty: True

Using the built-in queue requires a lot less code than building a stack from scratch
using a list, but notice how the two differ in output. The stack example pushes
1, 2, and 3 onto the stack, so the first value popped from the stack is 3. However, in
this example, pushing 1, 2, and 3 onto the queue results in a first popped value of 1.

CHAPTER 6 Structuring Data 123

Finding data using dictionaries

Creating and using a dictionary is much like working with a 1ist except that you
must now define a key and value pair. The great advantage of this data structure
is that dictionaries can quickly provide access to specific data items using the key.
There are limits to the kinds of keys you can use. Here are the special rules for
creating a key:

3 The key must be unique. When you enter a duplicate key, the information
found in the second entry wins; the first entry replaces the second.

3 The key must be immutable. This rule means that you can use strings,
numbers, or tuples for the key. You can't, however, use a list for a key.

The difference between mutable and immutable values is that immutable

values can't change. To change the value of a string, for example, Python

actually creates a new string that contains the new value and gives the new
REMEMBER string the same name as the old one. It then destroys the old string.

Python dictionaries are the software implementation of a data structure called a

@ hash table, an array that maps keys to values. Chapter 7 explains hashes in detail

and how using hashes can help dictionaries perform faster. You have no restric-

TP tions on the values you provide. A value can be any Python object, so you can use

a dictionary to access an employee record or other complex data. The following
example helps you understand how to use dictionaries better:

Colors = {"Sam": "Blue", "Amy": "Red", "Sarah": "Yellow"}

print(Colors["Sarah"])
print(Colors.keys())

for Item in Colors.keys():
print("{@} likes the color {1}."
.format(Item, Colors[Item]))

Colors["Sarah"] = "Purple"
Colors.update({"Harry": "Orange"})
del Colors["Sam"]

print(Colors)
Yellow
dict_keys(['Sarah', 'Amy', 'Sam'])

Sarah likes the color Yellow.
Amy likes the color Red.

124 PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

Sam likes the color Blue.
{'Harry': 'Orange', 'Sarah': 'Purple', 'Amy': 'Red'}

As you can see, a dictionary always has a key and value pair separated from each
other by a colon (:). Instead of using an index to access individual values, you use
the key. The special keys function lets you obtain a list of keys that you can
manipulate in various ways. For example, you can use the keys to perform itera-
tive processing of the data values that the dictionary contains.

Dictionaries are a bit like individual tables within a database. You can update, add,
and delete records to a dictionary as shown. The update function can overwrite or
add new entries to the dictionary.

Working with Trees

©

REMEMBER

A tree structure looks much like the physical object in the natural world. Using
trees helps you organize data quickly and find it in a shorter time than using other
data-storage techniques. You commonly find trees used for search and sort rou-
tines, but they have many other purposes as well. The following sections help you
understand trees at a basic level. You find trees used in many of the examples in
upcoming chapters.

Understanding the basics of trees

Building a tree works much like building a tree in the physical world. Each item
you add to the tree is a node. Nodes connect to each other using links. The combi-
nation of nodes and links forms a structure that looks much like a tree, as shown
in Figure 6-1.

Note that the tree has just one root node— just as with a physical tree. The root
node provides the starting point for the various kinds of processing you perform.
Connected to the root node are either branches or leaves. A leaf node is always an
ending point for the tree. Branch nodes support either other branches or leaves.
The type of tree shown in Figure 6-1 is a binary tree because each node has, at
most, two connections.

In looking at the tree, Branch B is the child of the Root node. That’s because the
Root node appears first in the list. Leaf E and Leaf F are both children of Branch B,
making Branch B the parent of Leaf E and Leaf F. The relationship between nodes
is important because discussions about trees often consider the child/parent rela-
tionship between nodes. Without these terms, discussions of trees could become
quite confusing.

CHAPTER 6 Structuring Data 125

FIGURE 6-1:

Atree in Python
looks much like

126

the physical
alternative.

Branch A

Leaf C Leaf D Leaf E Leaf F

Branch B

Building a tree

Python doesn’t come with a built-in tree object. You must either create your own
implementation or use a tree supplied with a package. A basic tree implementa-
tion requires that you create a class to hold the tree data object. The following code
shows how you can create a basic tree class. (You can find this code in the A4D;
06; Trees.ipynb file on the Dummies site as part of the downloadable code; see
the Introduction for details.)

class binaryTree:
def __init__(self, nodeData, left=None, right=None):
self.nodeData = nodeData
self.left left
self.right = right

def __str__(self):

return str(self.nodeData)

All this code does is create a basic tree object that defines the three elements that
a node must include: data storage, left connection, and right connection. Because
leaf nodes have no connection, the default value for 1eft and right is None. The
class also includes a method for printing the content of nodeData so that you can
see what data the node stores.

Using this simple tree requires that you not try to store anything in left orright
other than a reference to another node. Otherwise, the code will fail because there

PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

isn’t any error trapping. The nodeData entry can contain any value. The following
code shows how to use the binaryTree class to build the tree shown in
Figure 6-1:

tree = binaryTree("Root")
BranchA = binaryTree("Branch A")
BranchB = binaryTree("Branch B")
tree.left = BranchA

tree.right = BranchB

LeafC = binaryTree("Leaf C")
LeafD = binaryTree("Leaf D")
LeafE = binaryTree("Leaf E")
LeafF = binaryTree("Leaf F")
BranchA.left = LeafC
BranchA.right = LeafD
BranchB.left = LeafE
BranchB.right = LeafF

You have many options when building a tree, but building it from the top down (as
shown in this code) or the bottom up (in which you build the leaves first) are two
common methods. Of course, you don’t really know whether the tree actually
works at this point. Traversing the tree means checking the links and verifying that
they actually do connect as you think they should. The following code shows how
to use recursion (as described in Chapter 5) to traverse the tree you just built.

def traverse(tree):

if tree.left != None:
traverse(tree.left)
if tree.right != None:

traverse(tree.right)
print(tree.nodeData)

traverse(tree)

Leaf C
Leaf D
Branch A
Leaf E
Leaf F
Branch B
Root

CHAPTER 6 Structuring Data 127

As the output shows, the traverse function doesn’t print anything until it gets to
the first leaf. It then prints both leaves and the parent of those leaves. The traversal
follows the left branch first, and then the right branch. The root node comes last.

e— There are different kinds of data storage structures. Here is a quick list of the
"6" kinds of structures you commonly find:
TECHNICAL
STUFF 3 Balanced trees: A kind of tree that maintains a balanced structure through
reorganization so that it can provide reduced access times. The number of
elements on the left size differs from the number on the right side by
at most one.

3 Unbalanced trees: A tree that places new data items wherever necessary in
the tree without regard to balance. This method of adding items makes
building the tree faster but reduces access speed when searching or sorting.

3 Heaps: A sophisticated tree that allows data insertions into the tree structure.
The use of data insertion makes sorting faster. You can further classify these
trees as max heaps and min heaps, depending on the tree’s capability to
immediately provide the maximum or minimum value present in the tree.

Later in the book, you find algorithms that use balanced trees, unbalanced
trees, and heaps. For instance, Chapter 9 discusses the Dijkstra algorithm and
Chapter 14 discusses Huffman encoding. As part of these discussions, the book
provides pictures and code to explain how each data structure functions and its
role in making the algorithm work.

Representing Relations in a Graph

Graphs are another form of common data structure used in algorithms. You see
graphs used in places like maps for GPS and all sorts of other places where the top
down approach of a tree won’t work. The following sections describe graphs in
more detail.

Going beyond trees

A graph is a sort of a tree extension. As with trees, you have nodes that connect to
each other to create relationships. However, unlike binary trees, a graph can
have more than one or two connections. In fact, graph nodes often have a multi-
tude of connections. To keep things simple, though, consider the graph shown in
Figure 6-2.

128 PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 6-2:
Graph nodes
can connect to
each other in
myriad ways.

In this case, the graph creates a ring where A connects to both B and F. However,
it need not be that way. A could be a disconnected node or could also connect
to C. A graph shows connectivity between nodes in a way that is useful for defining
complex relationships.

Graphs also add a few new twists that you might not have thought about before.
For example, a graph can include the concept of directionality. Unlike a tree,
which has parent/child relationships, a graph node can connect to any other
node with a specific direction in mind. Think about streets in a city. Most streets
are bidirectional, but some are one-way streets that allow movement in only one
direction.

The presentation of a graph connection might not actually reflect the realities of
the graph. A graph can designate a weight to a particular connection. The weight
could define the distance between two points, define the time required to traverse
the route, or provide other sorts of information.

CHAPTER 6 Structuring Data 129

Building graphs

Most developers use dictionaries (or sometimes lists) to build graphs. Using a
dictionary makes building the graph easy because the key is the node name and
the values are the connections for that node. For example, here is a dictionary that
creates the graph shown in Figure 6-2. (You can find this code in the A4D; 06;
Graphs. ipynb file on the Dummies site as part of the downloadable code; see the
Introduction for details.)

graph = {'A': ['B
'B': ['A
'c': ['B',
'D': ['C
IS D
IEal s e

This dictionary reflects the bidirectional nature of the graph in Figure 6-2. It
could just as easily define unidirectional connections or provide nodes without
any connections at all. However, the dictionary works quite well for this purpose,
and you see it used in other areas of the book. Now it’s time to traverse the graph
using the following code:

def find_path(graph, start, end, path=[]):
path = path + [start]

if start == end:
print("Ending")
return path

for node in graph[start]:
print("Checking Node

, hode)

if node not in path:
print("Path so far ", path)

newp = find_path(graph, node, end, path)
if newp:
return newp
find_path(graph, 'B', 'E')
Checking Node A

Path so far ['B']
Checking Node B

130 PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Checking Node F

Path so far ['B', 'A']
Checking Node E

Path so far ['B', 'A', 'F']
Ending

Later chapters discuss how to find the shortest path. For now, the code finds only
a path. It begins by building the path node by node. As with all recursive routines,
this one requires an exit strategy, which is that when the start value matches the
end value, the path ends.

Because each node in the graph can connect to multiple nodes, you need a for loop
to check each of the potential connections. When the node in question already
appears in the path, the code skips it. Otherwise, the code tracks the current path
and recursively calls find_path to locate the next node in the path.

CHAPTER 6 Structuring Data 131

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Performing sorts using Mergesort
and Quicksort

» Conducting searches using trees and
the heap

» Considering the uses for hashing and
dictionaries

Chapter 7

Arranging and
Searching Data

ata surrounds you all the time. In fact, you really can’t get away from it.

Everything from the data needed to make business work to the nutritional

guide on the side of your box of cereal relies on data. The four data opera-
tions are create, read, update, and delete (CRUD), which focus on the need to
access the data you need to perform just about every task in life quickly and easily.
That’s why having the means to arrange and search data in a number of ways is
essential. Unless you can access the data when you want in the manner you want,
the CRUD required to make your business work will become quite cruddy indeed.
Consequently, this is an especially important chapter for everyone who wants to
make an application shine.

The first section of this chapter focuses on sorting data. Placing data in an order
that makes it easy to perform CRUD operations is important because the less code
you need to make data access work, the better. In addition, even though sorting
data might not seem particularly important, sorted data makes searches consid-
erably faster, as long as the sort matches the search. Sorting and searching go
together: You sort the data in a way that makes searching faster.

The second section of the chapter discusses searching. You won’t be surprised

to learn that many different ways are available to search for data. Some of
these techniques are slower than others; some have attributes that make them

CHAPTER 7 Arranging and Searching Data 133

attractive to developers. The fact is that no perfect search strategy exists, but the
exploration for such a method continues.

The final section of the chapter looks at hashing and dictionaries. The use of
indexing makes sorting and searching significantly faster but also comes with
trade-offs that you need to consider (such as the use of additional resources). An
index is a kind of pointer or an address. It’s not the data, but it points to the data,
much as your address points to your home. A block-by-block manual search for
your home in the city would be time consuming because the person looking for
you would need to ask each person at each address whether you’re there, but find-
ing your address in the phone book and then using that address to locate your
home is much faster.

Sorting Data Using Mergesort
and Quicksort

134

Sorting is one of the essentials of working with data. Consequently, a lot of people
have come up with a lot of different ways in which to sort data over the years. All
these techniques result in ordered data, but some work better than others do, and
some work exceptionally well for specific tasks. The following sections help you
understand the need for searching as well as consider the various search options.

Defining why sorting data is important

A case can be made for not sorting data. After all, the data is still accessible, even
if you don’t sort it — and sorting takes time. Of course, the problem with unsorted
data is the same problem as that junk drawer in your kitchen (or wherever you
have your junk drawer — assuming that you can find it at all). Looking for any-
thing in the junk drawer is time consuming because you can’t even begin to guess
where to find something. Rather than just reach in and take what you want, you
must take out myriad other items that you don’t want in an effort to find the one
item you need. Unfortunately, the item you need might not be in the junk drawer
in the first place—you might have thrown it out or put it in a different drawer.

The junk drawer in your home is just like unsorted data on your system. When the
data is unsorted, you need to search one item at a time, and you don’t even know
whether you’ll find what you need without searching every item in the dataset
first. It’s a frustrating way to work with data. The binary search example in the
“Considering divide and conquer” section of Chapter 5 points out the need for
sorting quite well. Imagine trying to find an item in a list without sorting it first.
Every search becomes a time-consuming sequential search.

PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

o
T
TECHNICAL
STUFF

Of course, simply sorting the data isn’t enough. If you have an employee database
sorted by last name, yet need to look up an employee by birth date, the sorting
isn’t useful. (Say you want to find all of the employees who have a birthday on a
certain day.) To find the birth date you need, you must still search the entire data-
set one item at a time. Consequently, sorting must focus on a particular need. Yes,
you needed the employee database sorted by department at one point and by last
name at another time, but now you need it sorted by birth date in order to use the
dataset effectively.

The need to maintain several sorted orders for the same data is the reason that
developers created indexes. Sorting a small index is faster than sorting the entire
dataset. The index maintains a specific data order and points to the full dataset so
that you can find what you need extremely fast. By maintaining an index for each
sort requirement, you can effectively cut data access time and allow several people
to access the data at the same time in the order in which they need to access it. The
“Relying on Hashing” section, later in this chapter, gives you an idea of how
indexing works and why you really need it in some cases, despite the additional
time and resources needed to maintain the indexes.

Many ways are available to categorize sorting algorithms. One of these ways is the
speed of the sort. When considering how effective a particular sort algorithm is at
arranging the data, timing benchmarks typically look at two factors:

3 Comparisons: To move data from one location in a dataset to another, you
need to know where to move it, which means comparing the target data to
other data in the dataset. Having fewer comparisons means better performance.

3 Exchanges: Depending on how you write an algorithm, the data may not get
to its final location in the dataset on the first try. The data might actually move
several times. The number of exchanges affects speed considerably because
now you're actually moving data from one location to another in memory.
Fewer and smaller exchanges (such as when using indexes) means better
performance.

Ordering data naively

Ordering data naively means to order it using brute-force methods — without any
regard whatsoever to making any kind of guess as to where the data should appear
in the list. In addition, these techniques tend to work with the entire dataset
instead of applying approaches that would likely reduce sorting time (such as the
divide and conquer technique described in Chapter 5). However, these searches are
also relatively easy to understand, and they use resources efficiently. Conse-
quently, you shouldn’t rule them out completely. Even though many searches fall
into this category, the following sections look at the two most popular approaches.

CHAPTER 7 Arranging and Searching Data 135

136

Using a selection sort

The selection sort replaced a predecessor, the bubble sort, because it tends to pro-
vide better performance than the bubble sort. Even though both sorts have a
worst-case sort speed of O(n?), the selection sort performs fewer exchanges. A
selection sort works in one of two ways: It either looks for the smallest item in the
list and places it in the front of the list (ensuring that the item is in its correct
location) or looks for the largest item and places it in the back of the list. Either
way, the sort is exceptionally easy to implement and guarantees that items imme-
diately appear in the final location once moved (which is why some people call it
an in-place comparison sort). Here’s an example of a selection sort. (You can find
this code in the A4D; @7; Sorting Techniques.ipynb file on the Dummies site
as part of the downloadable code; see the Introduction for details.)

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

for scanlndex in range(@, len(data)):
minIndex = scanlndex

for compIndex in range(scanlndex + 1, len(data)):
if data[compIndex] < data[minIndex]:
minIndex = complndex

if minIndex != scanlndex:
data[scanIndex], data[minIndex] = \
data[minIndex], data[scanlIndex]

print(data)
[1, 5, 7, 4, 2, 8, 9, 10, 6, 3]
[1, 2, 7, 4, 5, 8, 9, 10, 6, 3]
[1, 2, 3, 4, 5, 8, 9, 10, 6, T]
[1, 2, 3, 4, 5, 6, 9, 10, 8, T]
[1, 2, 3, 4, 5, 6, 7, 10, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 10, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Switching to an insertion sort

An insertion sort works by using a single item as a starting point and adding items
to the left or right of it based on whether these items are less than or greater than
the selected item. As the number of sorted items builds, the algorithm checks new
items against the sorted items and inserts the new item into the right position in
the list. An insertion sort has a best-case sort speed of O(n) and a worst case sort
speed of O(n?).

PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

LD,
TECHNICAL
STUFF

An example of best-case sort speed is when the entire dataset is already sorted
because the insertion sort won’t have to move any values. An example of the
worst-case sort speed is when the entire dataset is sorted in reverse order because
every insertion will require moving every value that already appears in the out-
put. You can read more about the math involved in this sort at https://www.
khanacademy.org/computing/computer-science/algorithms/insertion-
sort/a/analysis-of-insertion-sort.

The insertion sort is still a brute-force method of sorting items, but it can require
fewer comparisons than a selection sort. Here’s an example of an insertion sort:

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

for scanlndex in range(1, len(data)):
temp = data[scanlIndex]

minIndex = scanIndex
while minIndex > @ and temp < data[minIndex - 1]:
data[minIndex] = data[minIndex - 1]

minIndex —= 1

data[minIndex] = temp

print(data)
[5, 9, 7, 4, 2, 8, 1, 10, 6, 3]
[5, 7, 9, 4, 2, 8, 1, 10, 6, 3]
[4, 5, 7,9, 2, 8 1, 10, 6, 3]
[2, 4,5, 7, 9, 8 1, 10, 6, 3]
[2, 4,5, 7,8, 9,1, 10, 6, 3]
[1, 2, 4, 5, 7, 8, 9, 10, 6, 3]
[1, 2, 4, 5, 7, 8, 9, 10, 6, 3]
[1, 2, 4, 5, 6, 7, 8, 9, 10, 3]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Employing better sort techniques

As sort technology improves, the sort algorithms begin taking a more intelligent
approach to getting data into the right order. The idea is to make the problem
smaller and easier to manage. Rather than work with an entire dataset,
smart sorting algorithms work with individual items, reducing the work required
to perform the task. The following sections discuss two such smart sorting
techniques.

CHAPTER 7 Arranging and Searching Data 137

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort

Rearranging data with Mergesort

A Mergesort works by applying the divide and conquer approach. The sort begins
by breaking the dataset into individual pieces and sorting the pieces. It then
merges the pieces in a manner that ensures that it has sorted the merged piece.
The sorting and merging continues until the entire dataset is again a single piece.
The worst-case sort speed of the Mergesort is O(n log n), which makes it consid-
erably faster than the techniques used in the previous section (because log n is
always smaller than n). This sort actually requires the use of two functions. The
first function works recursively to split the pieces apart and put them back
together again.

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

def mergeSort(list):
Determine whether the list is broken into
individual pieces.
if len(list) < 2:
return list

Find the middle of the list.
middle = len(list)//2

Break the list into two pieces.
left = mergeSort(list[:middle])
right = mergeSort(list[middle:])

Merge the two sorted pieces into a larger piece.
print("Left side: ", left)

print("Right side: ", right)

merged = merge(left, right)

print("Merged ", merged)

return merged

The second function performs the actual task of merging the two sides using an
iterative process. Here’s the code used to merge the two pieces:

def merge(left, right):
When the left side or the right side is empty,
1t means that this is an individual item and is
already sorted.
if not len(left):
return left
if not len(right):
return right

138 PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Define variables used to merge the two pieces.

result =

(]

leftIndex = ©
rightIndex = 0
totalLen = len(left) + len(right)

Keep working until all of the items are merged.
while (len(result) < totallen):

Perform the required comparisons and merge
the pieces according to value.
if left[leftIndex] < right[rightIndex]:

result.append(left[leftIndex])

leftIndex+= 1
else:

result.append(right[rightIndex])
rightIndex+= 1

When the left side or the right side is longer,
add the remaining elements to the result.
if leftIndex == len(left) or \

rightIndex

== len(right):

result.extend(left[leftIndex:]

break

return result

mergeSort(data)

or right[rightIndex:])

The print statements in the code help you see how the merging process works.
Even though the process seems quite complex, it really is relatively straight-
forward when you work through the merging process shown here.

Left side:
Right side:
Merged [5,
Left side:
Right side:
Merged [2,
Left side:
Right side:
Merged [2,
Left side:

(9]
(5]

9]

(4]

[2]
4]

(7]

[2, 4]
4, 7]
[5, 9]

CHAPTER 7 Arranging and Searching Data

139

Right side: [2, 4, 7]

Merged [2, 4, 5, 7, 9]

Left side: [8]

Right side: [1]

Merged [1, 8]

Left side: [6]

Right side: [3]

Merged [3, 6]

Left side: [10Q]

Right side: [3, 6]

Merged [3, 6, 10]

Left side: [1, 8]

Right side: [3, 6, 10]
Merged [1, 3, 6, 8, 10]

Left side: [2, 4, 5, 7, 9]
Right side: [1, 3, 6, 8, 10]
Merged [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Solving sorting issues the best
way using Quicksort

The Quicksort is one of the fastest methods of sorting data. In reading about
Mergesort and Quicksort online, you find that some people prefer to use one
over the other in a given situation. For example, most people feel that a Quick-
sort works best for sorting arrays, and Mergesort works best for sorting linked
lists (see the discussion at http://www.geeksforgeeks.org/why—-quick-sort-
preferred-for-arrays-and-merge-sort-for-linked-lists/). Tony Hoare
wrote the first version of Quicksort in 1959, but since that time, developers have
written many other versions of Quicksort. The average sort time of a Quicksort
is O(n log n), but the worst-case sort time is O(n?).

The first part of the task is to partition the data. The code chooses a pivot point
that determines the left and right side of the sort. Here is the partitioning code for
this example:

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]
def partition(data, left, right):
pivot = data[left]

lIndex = left + 1
rindex = right

140 PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

http://www.geeksforgeeks.org/why-quick-sort-preferred-for-arrays-and-merge-sort-for-linked-lists/
http://www.geeksforgeeks.org/why-quick-sort-preferred-for-arrays-and-merge-sort-for-linked-lists/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

while True:

while 1Index <= rIndex and data[lIndex] <= pivot:
1Index += 1

while rindex >= lIndex and data[rIndex] »>= pivot:
rindex —-= 1

if rIndex <= lIndex:
break

data[lIndex], data[rIndex] = \
data[rIndex], data[lIndex]

print(data)

data[left], data[rIndex] = data[rIndex], data[left]
print(data)
return rlndex

UNDERSTANDING QUICKSORT WORST-

- CASE PERFORMANCE
Quicksort seldom incurs the worst-case sort time. However, even modified versions
TECHNICAL
STUFF of the Quicksort can have a worst-case sort time of O(n2) when one of these events
occurs:
® The dataset is already sorted in the desired order.
® The dataset is sorted in reverse order.

® All the elements in the dataset are the same.

All these problems occur because of the pivot point that a less intelligent sort function
uses. Fortunately, using the right programming technique can mitigate these problems
by defining something other than the leftmost or rightmost index as the pivot point. The
techniques that modern Quicksort versions rely on include:

® Choosing a random index

® Choosing the middle index of the partition

® Choosing the median of the first, middle, and last element of the partition for the
pivot (especially for longer partitions)

CHAPTER 7 Arranging and Searching Data 141

The inner loop of this example continuously searches for elements that are in the
wrong place and swaps them. When the code can no longer swap items, it breaks
out of the loop and sets a new pivot point, which it returns to the caller. This is the
iterative part of the process. The recursive part of the process handles the left and
right side of the dataset, as shown here:

def quickSort(data, left, right):
if right <= left:
return
else:
pivot = partition(data, left, right)
quickSort(data, left, pivot-1)
quickSort(data, pivot+l, right)

return data
quickSort(data, @, len(data)-1)

The amount of comparisons and exchanges for this example are relatively small
compared to the other examples. Here is the output from this example:

[9, 5, 7, 4, 2, 8, 1, 3, 6, 10]
[6, 5, 7, 4, 2, 8, 1, 3, 9, 10]
[6, 5, 3, 4, 2,8, 1, 7, 9, 10]
[6, 5, 3, 4, 2,1, 8, 7,9, 10]
[1, 5, 3, 4, 2,6, 8, 7, 9, 10]
[1, 5, 3, 4, 2, 6, 8, 7, 9, 10]
[1, 2, 3, 4,5, 6,8, 7, 9, 10]
[1, 2, 3, 4,5, 6,8, 7, 9, 10]
[1, 2, 3, 4,5, 6,8, 7, 9, 10]
[1, 2, 3, 4, 5,6, 7, 8 9, 10]

Using Search Trees and the Heap

142

Search trees enable you to look for data quickly. Chapter 5 introduces you to the
idea of a binary search, and the “Working with Trees” section of Chapter 6 helps
you understand trees to some extent. Obtaining data items, placing them in sorted
order in a tree, and then searching that tree is one of the faster ways to find
information.

A special kind of tree structure is the binary heap, which places each of the node
elements in a special order. The root node always contains the smallest value.
When viewing the branches, you see that upper-level branches are always a

PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 7-1:

The arrangement
of keys when
using a BST.

smaller value than lower-level branches and leaves. The effect is to keep the tree
balanced and in a predictable order so that searching becomes extremely efficient.
The cost is in keeping the tree balanced. The following sections describe how
search trees and the heap work in detail.

Considering the need to search effectively

Of all the tasks that applications do, searching is the more time consuming and
also the one required most. Even though adding data (and sorting it later) does
require some amount of time, the benefit to creating and maintaining a dataset
comes from using it to perform useful work, which means searching it for impor-
tant information. Consequently, you can sometimes get by with less efficient
CRUD functionality and even a less-than-optimal sort routine, but searches must
proceed as efficiently as possible. The only problem is that no one search performs
every task with absolute efficiency, so you must weigh your options based on what
you expect to do as part of the search routines.

Two of the more efficient methods of searching involve the use of the binary
search tree (BST) and binary heap. Both of the search techniques rely on a tree-
like structure to hold the keys used to access data elements. However, the arrange-
ment of the two methods is different, which is why one has advantages over the
other when performing certain tasks. Figure 7-1 shows the arrangement for a BST.

30 |
[12| |81 |
8 15 75 90

Note how the keys follow an order in which lesser numbers appear to the left and
greater numbers appear to the right. The root node contains a value that is in the
middle of the range of keys, giving the BST an easily understood balanced approach to
storing the keys. Contrast this arrangement to the binary heap shown in Figure 7-2.

CHAPTER 7 Arranging and SearchingData 143

FIGURE 7-2:

The arrangement
of keys when
using a binary
heap.

©

REMEMBER

144

Telegram Channel: @konkurcomputer

Each level contains values that are less than the previous level, and the root con-
tains the maximum key value for the tree. In addition, in this particular case, the
lesser values appear on the left and the greater on the right (although this order
isn’t strictly enforced). The figure actually depicts a binary max heap. You can also
create a binary min heap in which the root contains the lowest key value and each
level builds to higher values, with the highest values appearing as part of the
leaves.

As previously noted, BST has some advantages over binary heap when used
to perform a search. The following list provides some of the highlights of these
advantages:

¥ Searching for an element requires O(log n) time, contrasted to O(n) time for a
binary heap.

¥ Printing the elements in order requires only O(log n) time, contrasted to O(n
log n) time for a binary heap.

¥ Finding the floor and ceiling requires O(log n) time.

¥ Locating Kth smallest/largest element requires O(log n) time when the tree is
properly configured.

Whether these times are important depends on your application. BST tends to
work best in situations in which you spend more time searching and less time
building the tree. A binary heap tends to work best in dynamic situations in which
keys change regularly. The binary heap also offers advantages, as described in the
following list:

PART 2 Understanding the Need to Sort and Search

Fiquols jg=sis m

[www.konkurcomputer.ir] Hiouls ol

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

¥ Creating the required structures requires fewer resources because binary
heaps rely on arrays, making them cache friendlier as well.

¥ Building a binary heap requires O(n) time, contrasted to BST, which requires
O(n log n) time.

¥ Using pointers to implement the tree isn't necessary.

¥ Relying on binary heap variations (for example, the Fibonacci Heap) offers
advantages such as increase and decrease key times of O(1) time.

Building a binary search tree

You can build a BST using a variety of methods. Some people simply use a diction-
ary; others use custom code (see the article at https://interactivepython.
org/courselib/static/pythonds/Trees/SearchTreelmplementation.html
and http://code.activestate.com/recipes/577540-python-binary-search-
tree/ as examples). However, most developers don’t want to reinvent the wheel
when it comes to BST. With this in mind, you need a package, such as bintrees,
which provides all the required functionality to create and interact with BST using
a minimum of code. To download and install bintrees, open a command prompt,
type pip install bintrees, and press Enter. You see bintrees installed on your
system. The documentation for this package appears at https://pypi.python.
org/pypi/bintrees/2.0.6.

You can use bintrees for all sorts of needs, but the example in this section looks
specifically at a BST. In this case, the tree is unbalanced. The following code shows
how to build and display a BST using bintrees. (You can find this code in the A4D;
Q7; Search Techniques.ipynb file on the Dummies site as part of the download-
able code; see the Introduction for details.)

from bintrees import BinaryTree

data

{3:'White', 2:'Red', 1:'Green', 5:'Orange’,
4:'Yellow', 7:'Purple', 0:'Magenta'}

tree = BinaryTree(data)
tree.update({6:'Teal'})

def displayKeyValue(key, value):

print('Key: ', key, 'Value: ', value)
tree. foreach(displayKeyValue)
print('Item 3 contains: ', tree.get(3))
print('The maximum item is: ', tree.max_item())

CHAPTER 7 Arranging and Searching Data 145

https://interactivepython.org/courselib/static/pythonds/Trees/SearchTreeImplementation.html
https://interactivepython.org/courselib/static/pythonds/Trees/SearchTreeImplementation.html
http://code.activestate.com/recipes/577540-python-binary-search-tree/
http://code.activestate.com/recipes/577540-python-binary-search-tree/
https://pypi.python.org/pypi/bintrees/2.0.6
https://pypi.python.org/pypi/bintrees/2.0.6

Key: © Value: Magenta
Key: 1 Value: Green
Key: 2 Value: Red
Key: 3 Value: White
Key: 4 Value: Yellow
Key: 5 Value: Orange
Key: 6 Value: Teal
Key: 7 Value: Purple

Item 3 contains: White
The maximum item is: (7, 'Purple')

To create a binary tree, you must supply key and value pairs. One way to perform
this task is to create a dictionary as shown. After you create the tree, you can use
the update function to add new entries. The entries must include a key and value
pair as shown.

This example uses a function to perform a task with the data in tree. In this case,
@ the function merely prints the key and value pairs, but you could use the tree as
input to an algorithm for analysis (among other tasks). The function, display
TP KeyValue, acts as input to the foreach function, which displays the key and value
pairs as output. You also have access to myriad other features, such as using get

to obtain a single item or max_item to obtain the maximum item stored in tree.

Performing specialized searches
using a binary heap

As with BST, you have many ways to implement a binary heap. Writing one by
hand or using a dictionary does work well, but relying on a package makes things
considerably faster and more reliable. The heapq package comes with Python, so
you don’t even need to install it. You can find the documentation for this package
at https://docs.python.org/3/library/heapq.html. The following example
shows how to build and search a binary heap using heapq:

import heapq

data = {3:'White', 2:'Red', 1:'Green', 5:'Orange’,
4:'Yellow', 7:'Purple', 0:'Magenta'}
heap = []

for key, value in data.items():

heapq.heappush(heap, (key, value))
heapq.heappush(heap, (6, 'Teal'))
heap.sort()

146 PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://docs.python.org/3/library/heapq.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

for item in heap:

print('Key: ', item[@], 'Value: ', item[1])
print('Item 3 contains: ', heap[3][1])
print('The maximum item is: ', heapg.nlargest(1, heap))
Key: © Value: Magenta
Key: 1 Value: Green
Key: 2 Value: Red
Key: 3 Value: White
Key: 4 Value: Yellow
Key: 5 Value: Orange
Key: 6 Value: Teal
Key: 7 Value: Purple

Item 3 contains: White
The maximum item is: [(7, 'Purple')]

The example code performs the same tasks and provides the same output as the
example in the previous section, except that it relies on a binary heap in this case.
The dataset is the same as before. However, note the difference in the way you add
the data to the heap using heappush. In addition, after adding a new item, you
must call sort to ensure that the items appear in sorted order. Manipulating the
data is much like manipulating a list, as contrasted to the dictionary approach
used for bintrees. Whichever approach you use, it pays to choose an option that
works well with the application you want to create and provides the fastest pos-
sible search times for the tasks you perform.

Relying on Hashing

A major problem with most sort routines is that they sort all the data in a dataset.
When the dataset is small, you hardly notice the amount of data that the sort rou-
tine attempts to move. However, as the dataset gets larger, the data movement
becomes noticeable as you sit staring at the screen for hours on end. A way around
this problem is to sort just the key information. A key is the identifying data for a
particular data record. When you interact with an employee record, the employee
name or number usually serves as a key for accessing all the other information
you have about the employee. It’s senseless to sort all the employee information
when you really need only the keys sorted, which is what using hashing is all
about. When working with these data structures, you gain a major speed advan-
tage by sorting the smaller amount of data presented by the keys, rather than the
records as a whole.

CHAPTER 7 Arranging and Searching Data 147

148

©

REMEMBER

TIP

Putting everything into buckets

Until now, the search and sort routines in the book work by performing a series of
comparisons until the algorithm finds the correct value. The act of performing
comparisons slows the algorithms because each comparison takes some amount
of time to complete.

A smarter way to perform the task involves predicting the location of a particular
data item in the data structure (whatever that structure might be) before actually
looking for it. That’s what a hash table does —provides the means to create an
index of keys that points to individual items in a data structure so that an algo-
rithm can easily predict the location of the data. Placing keys into the index
involves using a hash function that turns the key into a numeric value. The numeric
value acts as an index into the hash table, and the hash table provides a pointer to
the full record in the dataset. Because the hash function produces repeatable
results, you can predict the location of the required data. In many cases, a hash
table provides a search time of O(1). In other words, you need only one comparison
to find the data.

A hash table contains a specific number of slots that you can view as buckets for
holding data. Each slot can hold one data item. The number of filled slots when
compared to the number of available slots is the load factor. When the load factor
is high, the potential for collisions (where two data entries have the same hash
value) becomes greater as well. The next section of the chapter discusses how to
avoid collisions, but all you really need to know for now is that they can occur.

One of the more typical methods for calculating the hash value for an input is to
obtain the modulus of the value divided by the number of slots. For example, if
you want to store the number 54 into a hash table containing 15 slots, the hash
value is 9. Consequently, the value 54 goes into slot 9 of the hash table when the
slots are numbers from o0 through 14 (given that the table has 15 slots). A real hash
table will contain a considerably greater number of slots, but 15 works fine for the
purposes of this section. After placing the item into the hash slot, you can use the
hash function a second time to find its location.

Theoretically, if you have a perfect hash function and an infinite number of slots,
every value you present to the hash function will produce a unique value. In some
cases, the hash calculation can become quite complex to ensure unique values
most of the time. However, the more complex the hash calculation, the less ben-
efit you receive from hashing, so keeping things simple is the best way to go.

Hashing can work with all sorts of data structures. However, for the purposes of
demonstration, the following example uses a simple list to hold the original data
and a second list to hold the resulting hash. (You can find this code in the A4D;
@7; Hashing.ipynb file on the Dummies site as part of the downloadable code;
see the Introduction for details.)

PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

data = [22, 40, 102, 105, 23, 31, 6, 5]
hash_table = [None] % 15
tblLen = len(hash_table)

def hash_function(value, table_size):
return value % table_size

for value in data:
hash_table[hash_function(value, tblLen)] = value

print(hash_table)

[105, 31, None, None, None, 5, 6, 22, 23, None, 40, None,
102, None, None]

To find a particular value again, you just run it through hash_function. For
example, print(hash_table[hash_function(102, tbllLen)]) displays 102 as
output after locating its entry in hash_table. Because the hash values are unique
in this particular case, hash_function can locate the needed data every time.

Avoiding collisions

A problem occurs when two data entries have the same hash value. If you simply
write the value into the hash table, the second entry will overwrite the first,
resulting in a loss of data. Collisions, the use of the same hash value by two values,
require you to have some sort of strategy in mind for handling them. Of course,
the best strategy is to avoid the collision in the first place.

One of the methods for avoiding collisions is to ensure that you have a large
enough hash table. Keeping the load factor low is your first line of defense against
having to become creative in the use of your hash table. However, even with a
large table, you can’t always avoid collisions. Sometimes the potential dataset is
so large, but the used dataset is so small, that avoiding the problem becomes
impossible. For example, if you have a school with 400 children and rely on their
social security number for identification, collisions are inevitable because no one
is going to create a hash table with a billion entries for that many children. The
waste of memory would be enormous. Consequently, a hash function may have to
use more than just a simple modulus output to create the hash value. Here are
some techniques you can use to avoid collisions:

¥ Partial values: When working with some types of information, part of that
information repeats, which can create collisions. For example, the first three
digits of a telephone number can repeat for a given area, so removing those
numbers and using just the remaining four may help solve a collision problem.

CHAPTER 7 Arranging and SearchingData 149

¥ Folding: Creating a unique number might be as easy as dividing the original
number into pieces, adding the pieces together, and using the result for the
hash value. For example, using the telephone number 555-1234, the hash
could begin by breaking it into pieces: 55 51 234, and then adding the result
together to obtain 340 as the number used to generate the hash.

¥ Mid-square: The hash squares the value in question, uses some number of
digits from the center of the resulting number, and discards the rest of those
digits. For example, consider the value 120. When squared, you get 14,400.
The hash could use 440 to generate the hash value and discard the 1 from the
left and the 0 from the right.

Obviously, there are as many ways to generate the hash as someone has imagina-
tion to create them. Unfortunately, no amount of creativity is going to solve every
collision problem, and collisions are still likely to occur. Therefore, you need
another plan. When a collision does occur, you can use one of the following meth-
ods to address it:

3 Open addressing: The code stores the value in the next open slot by looking
through the slots sequentially until it finds an open slot to use. The problem
with this approach is that it assumes an open slot for each potential value,
which may not be the case. In addition, open addressing means that the
search slows considerably after the load factor increases. You can no longer
find the needed value on the first comparison.

3 Rehashing: The code hashes the hash value plus a constant. For example,
consider the value 1,020 when working with a hash table containing 30 slots
and a constant of 100. The hash value in this case is 22. However, if slot 22
already contains a value, rehashing ((22 + 100) % 30) produces a new hash
value of 2. In this case, you don't need to search the hash table sequentially
for a value. When implemented correctly, a search might still include a low
number of comparisons to find the target value.

¥ Chaining: Each slot in the hash table can hold multiple values. You can
implement this approach by using a list within a list. Every time a collision
occurs, the code simply appends the value to the list in the target slot. This
approach offers the benefit of knowing that the hash will always produce the
correct slot, but the list within that slot will still require some sort of sequential
(or other) search to find the specific value.

Creating your own hash function

You may at times need to create custom hash functions in order to meet the needs
of the algorithm you use or to improve its performance. Apart from cryptographic

150 PART 2 Understanding the Need to Sort and Search

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

uses (which deserve a book alone), Chapter 12 presents common algorithms that
leverage different hash functions, such as the Bloom Filter, the HyperLogLog, and
the Count-Min Sketch, that leverage the properties of custom hash functions to
extract information from huge amounts of data.

You can find many examples of different hash functions in the Python hashlib
package. The hashlib package contains algorithms such as these:

¥ Secure Hash Algorithms (SHA): These algorithms include SHA1, SHA224,
SHA256, SHA384, and SHA512. Released by the National Institute of Standards
and Technology (NIST) as a U.S. Federal Information Processing Standard
(FIPS), SHA algorithms provide support for security applications and protocols.

3 RSA's MDS5 algorithm: Initially designed for security applications, this hash
turned into a popular way to checksum files. Checksums reduce files to a
single number that enables you to determine whether the file was modified
since hash creation (it lets you determine whether the file you downloaded
wasn't corrupted and hasn't been altered by a hacker). To ensure file integrity,
just check whether the MD5 checksum of your copy corresponds to the
original one communicated by the author of the file.

If hashlib isn’t available on your Python installation, you can install the package
using thepip install hashlib command from a command shell. The algorithms
in hashlib work well for simple applications when used alone.

DISCOVERING UNEXPECTED
USES OF HASHES

Apart from the algorithms detailed in this book, other important algorithms are based
on hashes. For instance, the Locality-sensitive Hashing (LSH) algorithm relies on a large
number of hash functions to stitch apparently separated information together. If you
wonder how marketing companies and intelligence services put different chunks of
information together based on names and addresses that aren't identical (for example,
guessing that “Los Angels,” “Los Angles,” and “Los Angleles” all refer to Los Angeles) the
answer is LSH. LSH chunks the information to check into parts and digests it using many
hash functions, resulting in the production of a special hash result, which is an address
for a bucket used to hold similar words. LSH is quite complex in its implementation, but
check out this material from the Massachusetts Institute of Technology (MIT): http://
www.mit.edu/~andoni/LSH/.

CHAPTER 7 Arranging and Searching Data 151

http://www.mit.edu/~andoni/LSH/
http://www.mit.edu/~andoni/LSH/

152

REMEMBER

However, you can combine the output of multiple hash functions when working
with complex applications that rely on a large dataset. Simply sum the results of
the various outputs after having done a multiplication on one or more of them.
The sum of two hash functions treated in this way retains the qualities of the
original hash functions even though the result is different and impossible to
recover as the original elements of the sum. Using this approach means that you
have a brand-new hash function to use as your secret hash recipe for algorithms
and applications.

The following code snippet relies on the hashlib package and the md5 and sha1
hash algorithms. You just provide a number to use for the multiplication inside
the hash sum. (Because numbers are infinite, you have a function that can pro-
duce infinite hashes.)

from hashlib import md5, shal

def hash_f(element, i, length):
""" Function to create many hash functions
h1 int(md5(element.encode('ascii')).hexdigest(),16)
h2 int(shal(element.encode('ascii')).hexdigest(),16)
return (h1 + i*h2) % length

nnn

print (hash_f("CAT", 1, 10%x5))
64018

print (hash_f("CAT", 2, 10%x5))
43738

If you wonder where to find other uses of hash tables around you, check out
Python’s dictionaries. Dictionaries are, in fact, hash tables, even though they have
a smart way to deal with collisions and you won’t lose your data because two
hashed keys casually have the same result. The fact that the dictionary index uses
a hash is also the reason for its speed in checking whether a key is present. In
addition, the use of a hash explains why you can’t use every data type as a key. The
key you choose must be something that Python can turn into a hash result. Lists,
for instance, are unhashable because they are mutable; you can change them by
adding or removing elements. Nevertheless, if you transform your list into a
string, you can use it as a key for a dictionary in Python.

PART 2 Understanding the Need to Sort and Search

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Exploring the
World of Graphs

IN THIS PART ...

Discover graph essentials that help you draw, measure,
and analyze graphs.

Interact with graphs to locate nodes, sort graph
elements, and find the shortest path.

Work with social media in graph form.

Explore graphs to find patterns and make decisions
based on those patterns.

Use the PageRank algorithm to rate web pages.

[www.konkurcomputer.ir] paypis psis ()
konkurcomputer.ir g™

Telegram Channel: @konkurcomputer

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Defining why networks are important

» Demonstrating graph drawing
techniques

» Considering graph functionality

» Using numeric formats to represent
graphs

Chapter 8

Understanding
Graph Basics

REMEMBER

raphs are structures that present a number of nodes (or vertexes) con-

nected by a number of edges or arcs (depending on the representation).

When you think about a graph, think about a structure like a map, where
each location on the map is a node and the streets are the edges. This presentation
differs from a tree where each path ends up in a leaf node. Remember from
Chapter 7 that a tree could look like an organizational chart or a family hierarchy.
Most important, tree structures actually do look like trees and have a definite start
and a definite end. This chapter begins by helping you understand the importance
of networks, which are a kind of graph commonly used for all sorts of purposes.

You can represent graphs in all sorts of ways, most of them abstract. Unless you’re
really good at visualizing things in your mind (most people aren’t), you need to
know how to draw a graph so you can actually see it. People rely on their vision to
understand how things work. The act of turning the numbers that represent a
graph into a graphic visualization is plotting. Languages like Python excel at plot-
ting because it’s such an incredibly important feature. In fact, it’s one of the rea-
sons that this book uses Python rather than another language, such as C (which is
good at performing a completely different set of tasks).

After you can visualize a graph, it’s important to know what to do with the graphic
representation. This chapter starts you off by measuring graph functionality.

CHAPTER 8 Understanding Graph Basics 155

You do things like count the edges and vertexes to determine things like graph
complexity. Seeing a graph also enables you to perform tasks like computing cen-
trality with greater ease. Of course, you build on what you discover in this chapter
in Chapter 9.

The numeric presentation of a graph is important, even if it makes understanding
the graph hard. The plot is for you, but the computer doesn’t really understand the
plot (despite having drawn it for you). Think of the computer as more of an
abstract thinker. With the need to present a graph in a form that the computer can
understand in mind, this chapter discusses three techniques for putting a graph
into numeric format: matrixes, sparse representations, and lists. All these tech-
niques have advantages and disadvantages, and you use them in specific ways in
future chapters (beginning with Chapter 9). Other ways are also available to put a
graph in numeric format, but these three methods will serve you well in commu-
nicating with the computer.

Explaining the Importance of Networks

156

A network is a kind of graph that associates names with the vertexes (nodes or
points), edges (arcs or lines), or both. Associating names with the graph features
reduces the level of abstraction and makes understanding the graph easier. The
data that the graph models becomes real in the mind of the person viewing it,
even though the graph truly is an abstraction of the real world put into a form that
both humans and computers can understand in different ways. The following sec-
tions help you understand the importance of networks better so that you can see
how their use in this book simplifies the task of discovering how algorithms work
and how you can benefit from their use.

Considering the essence of a graph

Graphs appear as ordered pairs in the form G = (V,E), where G is the graph, Vis a
list of vertexes, and E is a list of edges that connect the vertexes. An edge is actu-
ally a numeric pair that expresses the two vertexes that it connects. Consequently,
if you have two vertexes that represent cities, Houston (which equals 1) and Dallas
(which equals 2), and you want to connect them with a road, then you create an
edge, Highway, that contains a pair of vertex references, Highway = [Houston,
Dallas]. The graph would appear as G = [(Houston, Dallas)], which simply
says that there is a first vertex, Houston, with a connection to Dallas, the second
vertex. Using the order of presentation of the vertexes, Houston is adjacent to
Dallas; in other words, a car would leave Houston and enter Dallas.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 8-1:
Presenting a
simple undirected
graph.

Graphs come in several forms. An undirected graph (as shown in Figure 8-1) is one
in which the order of the edge entries doesn’t matter. A road map would represent
an undirected graph in most cases because traffic can travel along the road in both

directions.
. Dallas

Houston

San Antonio

A directed graph, like the one shown in Figure 8-2, is one in which the order of the
edge entries does matter because the flow is from the first entry to the second. In
this case, most people call the edges arcs to differentiate them from undirected
entries. Consider a graph representation of a traffic light sequence where Red
equals 1, Yellow equals 2, and Green equals 3. The three arcs required to express
the sequence are: Go = [Red, Green],Caution = [Green, Yellow], and Stop =
[Yellow, Red].The order of the entries is important because the flow from Go, to
Caution, to Stop is important. Imagine the chaos that would result if the signal
light chose to ignore the directed graph nature of the sequence.

A third essential kind of graph that you must consider is the mixed graph. Think
about the road map again. It isn’t always true that traffic flows both ways on all
roads. When creating some maps, you must consider the presence of one-way
streets. Consequently, you need both undirected and directed subgraphs in the
same graph, which is what you get with a mixed graph.

Another graph type for your consideration is the weighted graph (shown in
Figure 8-3), which is a graph that has values assigned to each of the edges or arcs.
Think about the road map again. Some people want to know more than simply the
direction to travel; they also want to know how far away the next destination is or
how much time to allocate for getting there. A weighted graph provides this sort
of information, and you use the weights in many different ways when performing
calculations using graphs.

CHAPTER 8 Understanding Graph Basics 157

FIGURE 8-2:
Creating the
directed version
of the same
graph.

FIGURE 8-3:
Using a weighted
graph to make
things more
realistic.

San Antonio

Dallas

San Antonio

Along with the weighted graph, you might also need a vertex-labeled graph when
creating a road map. When working with a vertex-labeled graph, each vertex has a
name associated with it. Consider looking at a road map where the mapmaker
hasn’t labeled the towns. Yes, you can see the towns, but you don’t know which
one is which without labels. You can find additional graph types described at
http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/Graphs.html.

Finding graphs everywhere

Graphs might seem like one of those esoteric math features that you found boring
in school, but graphs are actually quite exciting because you use them all the time

158 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir gl —

http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/Graphs.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

©

REMEMBER

©

REMEMBER

without really thinking about it. Of course, it helps to know that you won’t nor-
mally deal with the numbers behind the graphs. Think about a map. What you see
is a graph, but you see it in graphic format, with cities, roads, and all sorts of other
features. The thing is, when you see a map, you think about a map, not a graph
(but your GPS does see a graph, which is why it can always suggest the shortest
route to your destination). If you were to start looking around, you’d find many
common items that are graphs but are called something else.

Some graphs aren’t visual in nature, but you still don’t see them as graphs. For
example, telephone menu systems are a form of directional graph. In fact, for
their seeming simplicity, telephone graphs are actually somewhat complex. They
can include loops and all sorts of other interesting structures. Something you
might try is to map out the graph for a menu system at some point. You might be
surprised at just how complex some of them can be.

Another form of menu system appears as part of applications. To perform tasks,
most applications take you through a series of steps in a special kind of
subapplication called a wizard. The use of wizards make seemingly complex
applications much easier to use, but to make the wizards work, the application
developer must create a graph depicting the series of steps.

It may surprise you to find that even recipes in cookbooks are a kind of graph (and
creating a pictorial representation of the relationships between ingredients can
prove interesting). Each ingredient in the recipe is a node. The nodes connect
using the edges created by the instructions for mixing the ingredients. Of course,
a recipe is just a kind of chemistry, and chemical graphics show the relationship
between elements in a molecule. (Yes, people actually are having this discussion;
you can see one such thread athttp: //stackover flow.com/questions/7749073/
representing-a-cooking-recipe-in-a-graph-database.)

The point is that you see these graphs all the time, but you don’t see them as
graphs — you see them as something else, such as a recipe or a chemical formula.
Graphs can represent many kinds of relationships between objects, implying an
order sequence, time dependence, or causality.

Showing the social side of graphs

Graphs have social implications because they often reflect relationships between
people in various settings. One of the most obvious uses of graphs is the
organizational chart. Think about it. Each node is a different person in the
organization, with edges connecting the nodes to show the various relationships
between individuals. The same holds true for all sorts of graphs, such as those
that show family history. However, in the first case, the graph is undirected
because communication flows both ways between managers and subordinates
(although the nature of the conversation differs based on direction). In the second

CHAPTER 8 Understanding Graph Basics 159

http://stackoverflow.com/questions/7749073/representing-a-cooking-recipe-in-a-graph-database
http://stackoverflow.com/questions/7749073/representing-a-cooking-recipe-in-a-graph-database

case, the graph is directed because two parents bear children. The flow shows the
direction of heredity from a founding member to the current children.

Social media benefits from the use of graphs as well. For example, a whole indus-
try exists for analyzing the relationships between tweets on Twitter (see http://
twittertoolsbook.com/10-awesome-twitter-analytics-visualization-
tools/ for an example of just some of these tools). The analysis relies on the use
of graphs to discover the relationships between individual tweets.

However, you don’t have to look at anything more arcane than email to see graphs
used for social needs. The Enron corpus includes the 200,399 email messages of
158 senior executives, dumped onto the Internet by the Federal Energy Regulatory
Commission (FERC). Scientists and scholars have used this corpus to create many
social graphs to disclose how the seventh largest company in the United States
needed to file bankruptcy in 2001 (see https://www.technologyreview.com/s/
515801 /the-immortal-1ife-of-the-enron-e-mails/ to learn how this corpus
has helped and is actually helping advance the analysis of complex graphs).

Even your computer has social graphs on it. No matter which email application
you use, you can group emails in various ways, and these grouping methods nor-
mally rely on graphs to provide a structure. After all, trying to follow the flow of
discussion without knowing which messages are responses to other messages is a
lost cause. Yes, you could do it, but as the number of messages increases, the
effort requires more and more time until it’s wasted because of time constraints
most people have.

Understanding subgraphs

Relationships depicted by graphs can become quite complex. For example, when
depicting city streets, most streets allow traffic in both directions, making an
undirected graph perfect for representation purposes. However, some streets
allow traffic in only one direction, which means that you need a directed graph in
this case. The combination of two-way and one-way streets makes representation
using a single graph type impossible (or at least inconvenient). Mixing undirected
and directed graphs in a single graph means that you must create subgraphs to
depict each graph type and then connect the subgraphs in a larger graph. Some
graphs that contain subgraphs are so common that they have specific names,
which is a mixed graph in this case.

Subgraphs are useful for other purposes as well. For example, you might want to
analyze a loop within a graph, which means describing that loop as a subgraph.
You don’t need the entire graph, just the nodes and edges required to perform the
analysis. All sorts of disciplines use this approach. Yes, developers use it to ensure
that parts of an application work as expected, but city engineers also use it to
understand the nature of traffic flow in a particularly busy section of the city.

160 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/
http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/
http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/
https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/
https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Medical professionals also use subgraphs to understand the flow of blood or other
liquids between organs in the body. The organs are the nodes and the blood ves-
sels are the edges. In fact, many of these graphs are weighted — it’s essential to
know how much blood is flowing, not just that it’s flowing.

Complex graphs can also hide patterns that you need to know about. For example,
the same cycle can appear in multiple parts of the graph, or you might see the
same cycle within different graphs. By creating a subgraph from the cycle, you can
easily perform comparisons within the same graph or between graphs to see how
they compare. For example, a biologist might want to compare the cycle of muta-
tion for one animal against the cycle of mutation for another animal. To make this
comparison, the biologist would need to create the representation as a subgraph
of the processes for the entire animal. (You can see an interesting view of this
particular use of graphs at http://www.sciencedirect.com/science/article/
pii/S1359027896000569.). The graph appears near the beginning of the article as
Figure 1.

Defining How to Draw a Graph

©

REMEMBER

A few people can visualize data directly in their minds. However, most people
really do need a graphic presentation of the data in order to understand it. This
point is made clear by the use of graphics in business presentations. You could tell
others about last year’s sales by presenting tables of numbers. After a while, most
of your audience would nod off and you’d never get your point across. The reason
is simple: The tables of numbers are precise and present a lot of information, but
they don’t do it in a way that people understand.

Plotting the data and showing the sales numbers as a bar chart helps people see
the relationships between the numbers with greater ease. If you want to point out
that sales are increasing each year, a bar chart with bars of increasing length
makes this point quickly. Interestingly enough, using the plot actually presents
the data in a less accurate way. Trying to see that the company made $3,400,026.15
last year and $3,552,215.82 this year when looking at a bar chart is nearly impos-
sible. Yes, the table would show this information, but people don’t really need to
know that level of detail — they simply need to see the annual increase, the con-
trast in earnings from year to year. However, your computer is interested in
details, which is why plots are for humans and matrixes are for computers.

The following sections help you discover the wonders of plotting. You get a quick
overview of how plots work with Python. Of course, these principles appear in
later chapters in a more detailed form. These sections provide a start so that you
can more easily understand the plots presented later.

CHAPTER 8 Understanding Graph Basics 161

http://www.sciencedirect.com/science/article/pii/S1359027896000569
http://www.sciencedirect.com/science/article/pii/S1359027896000569

162

©

REMEMBER

TIP

Distinguishing the key attributes

Before you can draw a graph, you need to know about graph attributes. As previ-
ously mentioned, graphs consist of nodes (or vertexes) and either edges (for undi-
rected graphs) or arcs (for directed graphs). Any graph that you want to draw will
contain these elements. However, how you represent these elements depends
partly upon the package you choose to use. For the sake of simplicity, the book
relies on a combination of two packages:

¥ NetworkX (https://networkx.github. io/): Contains code for draw-
ing graphs.

3 matplotlib (http://matplotlib.org/): Provides access to all sorts of
drawing routines, some of which can display graphs created by NetworkX.

To use packages in Python, you must import them. When you need to use external
packages, you must add special code, such as the following lines of code that pro-
vide access to matplotlib and networkx. (You can find this code in the A4D; 08;
Draw Graph.ipynb file on the Dummies site as part of the downloadable code; see
the Introduction for details.)

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

The special %matplotlib inline entry lets you see your plots directly in the
Notebook rather than as an external graphic. Using this entry means that you can
create a Notebook with graphics already included so that you don’t have to run the
code again to see the results you received in the past.

Now that you have access to the packages, you create a graph. In this case, a graph
is a sort of container that holds the key attributes that define the graph. Creating
a container lets you draw the graph so that you can see it later. The following code
creates a NetworkX Graph object.

AGraph = nx.Graph()

Adding the key attributes to AGraph comes next. You must add both nodes and
edges using the following code.

Nodes
Edges

range(1,5)
[(1,2), (2,3), (3,4), (4,5), (1,3), (1,5)]

As previously mentioned, Edges describe connections between Nodes. In this case,
Nodes contains values from 1 through 5, so Edges contains connections between
those values.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://networkx.github.io/
http://matplotlib.org/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 8-4:
Seeing what a
graph contains
makes it easier to
understand.

Of course, the Nodes and Edges are just sitting there now and won’t appear as part
of AGraph. You must put them into the container to see them. Use the following
code to add the Nodes and Edges to AGraph.

AGraph.add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

The NetworkX package contains all sorts of functions you can use to interact with
individual nodes and edges, but the approach shown here is the fastest way to do
things. Even so, you might find that you want to add additional edges later. For
example, you might want to add an edge between 2 and 4, in which case you would
call the AGraph.add_edge(2, 4) function.

Drawing the graph

You can interact in all sorts of ways with the AGraph container object that you cre-
ated in the previous section, but many of those ways to interact are abstract and
not very satisfying if you’re a visually oriented person. Sometimes it’s just nice to
see what an object contains by looking at it. The following code displays the graph
contained in AGraph:

nx.draw(AGraph, with_labels=True)

The draw() function provides various arguments that you can use to dress up the
display, such as modifying the node color using the node_color argument and the
edge color using the edge_color argument. Figure 8-4 shows the graph contained
in AGraph.

CHAPTER 8 Understanding Graph Basics 163

DIFFERENCES IN FIGURE OUTPUT

Figure 8-4 shows typical output. However, your graph might appear to be slightly differ-
ent from the one shown. For example, the triangle could appear at the bottom instead
of the top, or the angles between the nodes could vary. The connections between the
nodes matter most, so slight differences in actual appearance aren’timportant. Running
the code several times would demonstrate that the orientation of the graph changes,
along with the angles between edges. You see this same difference in other screenshots
in the book. Always view the image with node connections in mind, rather than expect-
ing a precise match between your output and the book’s output.

Measuring Graph Functionality

164

After you can visualize and understand a graph, you need to consider the question
of which parts of the graph are important. After all, you don’t want to spend your
time performing analysis on data that doesn’t really matter in the grand scheme
of things. Think about someone who is analyzing traffic flow to improve the street
system. The intersections represent vertexes and the streets represent edges
along which the traffic flows. By knowing how the traffic flows, that is, which
vertexes and edges see the most traffic, you can start thinking about which roads
to widen and which need more repair because more traffic uses them.

However, just looking at individual streets isn’t enough. A new skyscraper may
bring with it a lot of traffic that affects an entire area. The skyscraper represents
a central point around which traffic flow becomes more important. The most
important vertexes are those central to the new skyscraper. Calculating centrality,
the most important vertexes in a graph, can help you understand which parts of
the graph require more attention. The following sections discuss the basic issues
you must consider when measuring graph functionality, which is the capability of
the graph to model a specific problem.

Counting edges and vertexes

As graphs become more complex, they convey more information, but they also
become harder to understand and manipulate. The number of edges and vertexes
in a graph determines graph complexity. However, you use the combination of
edges and vertexes to tell the full story. For example, you can have a node that
isn’t connected to the other nodes in any way. It’s legal to create such a node in a
graph to represent a value that lacks connections to the others. Using the following
code, you can easily determine that node 6 has no connections to the others

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

because it lacks any edge information. (You can find this code in the A4D; 08;
Graph Measurements. ipynb file.)

import networkx as nx
import matplotlib.pyplot as plt
#matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,5)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,9)]

AGraph .add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

AGraph .add_node(6)
sorted(nx.connected_components(AGraph))

[{1, 2, 3, 4, 5}, {6}]

The output from this code shows that nodes 1 through 5 are connected and that
node 6 lacks a connection. Of course, you can remedy this situation by adding
another edge by using the following code and then checking again:

AGraph.add_edge(1,6)
sorted(nx.connected_components(AGraph))

[{1/ 2/ 3/ 4/ 5/ 6}]

The output now shows that every one of the nodes connects to at least one other
node. However, you don’t know which nodes have the most connections. The
count of edges to a particular node is the degree. The higher the degree, the more
complex the node becomes. By knowing the degree, you can develop an idea of
which nodes are most important. The following code shows how to obtain the
degree for the example graph.

nx.degree(AGraph) .values()
dict_values([4, 2, 3, 2, 2, 1])
The degree values appear in node order, so node 1 has four connections and node 6

has only one connection. Consequently, node 1 is the most important, followed by
node 3, which has three connections.

CHAPTER 8 Understanding Graph Basics 165

166

©

REMEMBER

USE OF WHITESPACE IN OUTPUT

The output for this example appears on two lines in the book, even though it appears
on just one line in Jupyter Notebook. The addition of whitespace helps the output
appear in a readable size on the page — it doesn't affect the actual information. Other
examples in the book also show output on multiple lines, even when it appears on a
single line in Jupyter Notebook.

When modeling real-world data, such as the tweets about a particular topic, the
nodes also tend to cluster. You might think of this tendency as a kind of trending —
what people feel is important now. The fancy math term for this tendency is
clustering, and measuring this tendency helps you understand which group of
nodes is most important in a graph. Here is the code you use to measure clustering
for the example graph:

nx.clustering(AGraph)

{1: 0.16666666666666666, 2: 1.0, 3: ©.3333333333333333,
4: 0.0, 5: 0.0, 6: 0.0}

The output shows that the nodes are most likely to cluster around node 2 even
though node 1 has the highest degree. That’s because both nodes 1 and 3 have high
degrees and node 2 is between them.

Clustering graphs helps aid understanding data. The technique helps show that
there are nodes in the graph that are better connected and nodes that risk isola-
tion. When you understand how elements connect in a graph, you can determine
how to strengthen its structure or, on the contrary, destroy it. During the Cold
war, military scientists from both the United States and the Soviet bloc studied
graph clustering to better understand how to disrupt the other side’s supply chain
in case of a conflict.

Computing centrality

Centrality comes in a number of different forms because importance often depends
on different factors. The important elements of a graph when analyzing tweets
will differ from the important elements when analyzing traffic flow. Fortunately,
NetworkX provides you with a number of methods for calculating centrality. For
example, you can calculate centrality based on node degrees. The following code
uses the modified graph from the previous section of the chapter. (You can find
this code in the A4D; ©8; Graph Centrality.ipynb file.)

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 8-5:
Plotting the graph
can help you see
degree centrality
with greater ease.

import networkx as nx
import matplotlib.pyplot as plt
#matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,6)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5), (1,6)]

AGraph.add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

nx.degree_centrality(AGraph)

{1: 0.8, 2: 0.4, 3: 0.6000000000000001, 4: ©.4, 5: 0.4,
6: 0.2}

The values differ by the number of connections for each node. Because node 1 has
four connections (it has the highest degree), it also has the highest centrality. You
can see how this works by plotting the graph using a call to nx.draw(AGraph,
with_labels=True), as shown in Figure 8-5.

CHAPTER 8 Understanding Graph Basics 167

168

Node 1 is indeed in the center of the graph with the most connections. The node 1
degree ensures that it’s the most important based on the number of connections.
When working with directed graphs, you can also use the in_degree_centrality()
and out_degree_centrality() functions to determine degree centrality based on
connection type rather than just the number of connections.

When working with traffic analysis, you might need to determine which locations
are central based on their distance to other nodes. Even though a shopping center
in the suburbs may have all sorts of connections to it, the fact that it is in the
suburbs may reduce its impact on traffic. Yet, a supermarket in the center of the
city with few connections might have a great impact on traffic because it’s close
to so many other nodes. To see how this works, add another node, 7, that is dis-
connected to the graph. The centrality of that node is infinite because no other
node can reach it. The following code shows how to calculate the closeness cen-
trality for the various nodes in the example graph:

AGraph.add_node(7)
nx.closeness_centrality(AGraph)

.6944444444444445,
.5208333333333334,
.5952380952380952,
.462962962962963,
.5208333333333334,
.4166666666666667 ,
.0}

= O O b W N =
[SEESEN RO RN RSN N

The output shows the centrality of each node in the graph based on its closeness
to every other node. Notice that node 7 has a value of 0, which means that it’s an
infinite distance to every other node. On the other hand, node 1 has a high value
because it’s close to every node to which it has a connection. By calculating the
closeness centrality, you can determine which nodes are the most important based
on their location.

Another form of distance centrality is betweenness. Say that you’re running a
company that transfers goods throughout the city. You’d like to know which nodes
have the greatest effect on these transfers. Perhaps you can route some traffic
around this node to make your operation more specific. When calculating between-
ness centrality, you determine the node that has the highest number of short
paths coming to it. Here’s the code used to perform this calculation (with the
disconnected node 7 still in place):

nx.betweenness_centrality(AGraph)

{1: 0.36666666666666664 ,

PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

0,
.13333333333333333,
.03333333333333333,
. 06666666666666667,
0,
.0}

= O O b W N
© O 000 O O

As you might expect, node 7 has no effect on transfer between other nodes because
it has no connections to the other nodes. Likewise, because node 6 is a leaf node
with only one connection to another node, it has no effect on transfers. Look again
at Figure 8-5. The subgraph consisting of nodes 1, 3, 4, and 5 have the greatest
effect on the transfer of items in this case. No connection exists between nodes 1
and 4, so nodes 3 and 5 act as intermediaries. In this case, node 2 acts like a
leaf node.

NetworkX provides you with a number of other centrality functions. You find
@ a complete list of these functions at http://networkx.readthedocs.io/en/
stable/reference/algorithms.centrality.html. The important consideration
TP is determining how you want to calculate importance. Considering centrality in
light of the kind of importance you want to attach to the vertexes and edges in a

graph is essential.

Putting a Graph in Numeric Format

Precision is an important part of using algorithms. Even though too much preci-
sion hides the overall pictures from humans, computers thrive on detail. Often,
the more detail you can provide, the better the results you receive. However, the
form of that detail is important. To use certain algorithms, the data you provide
must appear in certain forms or the result you receive won’t make sense (it will
contain errors or have other issues).

Fortunately, NetworkX provides a number of functions to convert your graph into
forms that other packages and environments can use. These functions appear at
http://networkx.readthedocs.io/en/stable/reference/convert.html. The
following sections show how to present graph data as a NumPy (http://www.
numpy .org/) matrix, SciPy (https://www.scipy.org/) sparse representation,
and a standard Python list. You use these presentations as the book progresses to
work with the various algorithms. (The code in the following sections appears in
the A4D; @8; Graph Conversion.ipynb file and relies on the graph you created
in the “Counting edges and vertexes” section of the chapter.)

CHAPTER 8 Understanding Graph Basics 169

http://networkx.readthedocs.io/en/stable/reference/algorithms.centrality.html
http://networkx.readthedocs.io/en/stable/reference/algorithms.centrality.html
http://networkx.readthedocs.io/en/stable/reference/convert.html
http://www.numpy.org/
http://www.numpy.org/
https://www.scipy.org/

170

Adding a graph to a matrix

Using NetworkX, you can easily move your graph to a NumPy matrix and back
again as needed to perform various tasks. You use NumPy to perform all sorts of
data manipulation tasks. By analyzing the data in a graph, you might see patterns
that wouldn’t ordinarily be visible. Here’s the code used to convert the graph into
a matrix that NumPy can understand:

import networkx as nx
import matplotlib.pyplot as plt
#matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,6)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5), (1,6)]

AGraph .add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

nx.to_numpy_matrix(AGraph)

matrix([

0
1
1.,
0
1
1

(SR S W)
S 0~ 000 =

0 O, O r ¥~
O © 0 00

S 00~ O -

The resulting rows and columns show where connections exist. For example,
there is no connection between node 1 and itself, so row 1, column 1, has a 0 in it.
However, there is a connection between node 1 and node 2, so you see a 1in row 1,
column 2, and row 2, column 1 (which means that the connection goes both ways
as an undirected connection).

The size of this matrix is affected by the number of nodes (the marix has as many
rows and columns as nodes), and when it grows huge, it has many nodes to rep-
resent because the total number of cells is the square of the number of nodes. For
instance, you can’t represent the Internet using such a matrix because a conser-
vative estimate calculates that at 10A10 websites, you’d need a matrix with 10A20
cells to store its structure, something impossible with the present computing
capacity.

PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

In addition, the number of nodes affects its content. If n is number of nodes, you
find a minimum of (n-1) ones and a maximum of n(n-1) ones. The fact that the
number of ones is few or large makes the graph dense or sparse, and that’s rele-
vant because if the connection between nodes are few, such as in the case of web-
sites, more efficient solutions exist for storing graph data.

Using sparse representations

The SciPy package also performs various math, scientific, and engineering tasks.
When using this package, you can rely on a sparse matrix to hold the data. A
sparse matrix is one in which only the actual connections appear in the matrix; all
other entries don’t exist. Using a sparse matrix saves resources because the mem-
ory requirements for a sparse matrix are small. Here is the code you use to create
a SciPy sparse matrix from a NetworkX graph:

print(nx.to_scipy_sparse_matrix(AGraph))

(0, 1) 1
(0, 2) 1
(0, 4) 1
(0, 5) 1
(1, 9) 1
(1, 2) 1
(2, 9) 1
(2, 1) 1
(2, 3) 1
(8, 2) 1
(38, 4) 1
(4, 9) 1
(4, 3) 1
(5, 9) 1

As you can see, the entries show the various edge coordinates. Each active
coordinate has a 1 associated with it. The coordinates are 0 based. This means that
(@, 1) actually refers to a connection between nodes 1 and 2.

Using a list to hold a graph

Depending on your needs, you might find that you also require the ability to create
a dictionary of lists. Many developers use this approach to create code that

CHAPTER 8 Understanding Graph Basics 171

172

performs various analysis tasks on graphs. You can see one such example at
https://www.python.org/doc/essays/graphs/. The following code shows how
to create a dictionary of lists for the example graph:

nx.to_dict_of_lists(AGraph)

{1: [2, 8, 5, 6], 2: [1, 3], 3: [1, 2, 4], 4: [3, 5],
5: [1, 4], 6: [1]}

Notice that each node represents a dictionary entry, followed by a list of the nodes
to which it connects. For example, node 1 connects to nodes 2, 3, 5, and 6.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir gl —

https://www.python.org/doc/essays/graphs/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Working with graphs

» Performing sorting tasks
» Reducing the tree size

» Locating the shortest route between
two points

Chapter 9
Reconnecting the Dots

his chapter is about working with graphs. You use graphs every day to per-

form a range of tasks. A graph is simply a set of vertexes, nodes, or points

connected by edges, arcs, or lines. Putting this definition in simpler terms,
every time you use a map, you use a graph. The starting point, intermediate
points, and destination are all nodes. These nodes connect to each other with
streets, which represent the lines. Using graphs enables you to describe relation-
ships of various sorts. The reason that Global Positioning System (GPS) setups
work is that you can use math to describe the relationships between points on the
map and the streets that connect them. In fact, by the time you finish this chapter,
you understand the basis used to create a GPS (but not necessarily the mechanics
of making it happen). Of course, the fundamental requirement for using a graph
to create a GPS is the capability to search for connections between points on the
map, as discussed in the first section of the chapter.

To make sense of a graph, you need to sort the nodes, as described in the second
section of the chapter, to create a specific organization. Without organization,
making any sort of decision becomes impossible. An algorithm might end up
going in circles or giving inconvenient output. For example, some early GPS set-
ups didn’t correctly find the shortest distance between two points, or sometimes
ended up sending someone to the wrong place. Part of the reason for these prob-
lems is the need to sort the data so that you can view it in the same manner each
time the algorithm traverses the nodes (providing you with a route between your
home and your business).

When you view a map, you don’t look at the information in the lower-right corner
when you actually need to work with locations and roads in the upper-left corner.

CHAPTER 9 Reconnecting the Dots 173

A computer doesn’t know that it needs to look in a specific place until you tell it to
do so. To focus attention in a specific location, you need to reduce the graph size,
as described in the third section of the chapter.

Now that the problem is simplified, an algorithm can find the shortest route
between two points, as described in the fourth section of the chapter. After all, you
don’t want to spend any more time than is necessary in traffic fighting your way
from home to the office (and back again). The concept of finding the shortest
route is a bit more convoluted than you might think, so the fourth section looks at
some of the specific requirements for performing routing tasks in detail.

Traversing a Graph Efficiently

Traversing a graph means to search (visit) each vertex (node) in a specific order.
The process of visiting a vertex can include both reading and updating it. As you
traverse a graph, an unvisited vertex is undiscovered. After a visit, the vertex
becomes discovered (because you just visited it) or processed (because the algorithm
tried all the edges departing from it). The order of the search determines the kind
of search performed, and many algorithms are available to perform this task. The
following sections discuss two such algorithms.

CONSIDERING REDUNDANCY

When traversing a tree, every path ends in a leaf node so that you know that you have
reached the end of that path. However, when working with a graph, the nodes intercon-
nect such that you might have to traverse some nodes more than once to explore the
entire graph. As the graph becomes denser, the possibility of visiting the same node
more than once increases. Dense graphs can greatly increase both computational and
storage requirements.

To reduce the negative effects of visiting a node more than once, it's common to mark
each visited node in some manner to show that the algorithm has visited it. When the
algorithm detects that it has visited a particular node, it can simply skip that node and
move onto the next node in the path. Marking visited nodes decreases the performance
penalties inherent in redundancy.

Marking visited nodes also enables verification that the search is complete. Otherwise,

an algorithm can end up in a loop and continue to make the rounds through the graph
indefinitely.

174 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Creating the graph

To see how traversing a graph might work, you need a graph. The examples in this
section rely on a common graph so that you can see how the two techniques work.
The following code shows the adjacency list found at the end of Chapter 8. (You
can find this code in the A4D; @9; Graph Traversing.ipynb file on the Dummies
site as part of the downloadable code; see the Introduction for details.)

graph = {'A': ['B', 'C'],
'B': ['A', 'C', 'D'],
'c': ['A', 'B', 'D', 'E'],
'D': ['B', 'C', 'E', 'F'],
'E': ['C', 'D', 'F'],
'"F': ['D', '"E']}

The graph features a bidirectional path that goes from A, B, D, and F on one side
(starting at the root) and A, C, E, and F along the second side (again, starting at
the root). There are also connections (that act as possible shortcuts) going from B
to C, from C to D, and from D to E. Using the NetworkX package presented in
Chapter 8 lets you display the adjacency as a picture so that you can see how the
vertexes and edges appear (see Figure 9-1) by using the following code:

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt
#matplotlib inline

Graph = nx.Graph()
for node in graph:
Graph.add_nodes_from(node)
for edge in graph[node]:
Graph.add_edge(node, edge)

pos = { 'A': [0.00, ©0.50], 'B': [0.25, ©.75],
'C': [0.25, ©.25], 'D': [0.75, 0.75],
'E': [0.75, ©.25], 'F': [1.00, 0.50]}

nx.draw(Graph, pos, with_labels=True)

nx .draw_networkx(Graph, pos)
plt.show()

CHAPTER 9 Reconnecting the Dots 175

FIGURE 9-1:
Representing the
example graph by
NetworkX.

Applying breadth-first search

A breadth-first search (BFS) begins at the graph root and explores every node that
attaches to the root. It then searches the next level — exploring each level in turn
until it reaches the end. Consequently, in the example graph, the search explores
from A to B and C before it moves on to explore D. BES explores the graph in a
systematic way, exploring vertexes all around the starting vertex in a circular
fashion. It begins by visiting all the vertexes a single step from the starting vertex;
it then moves two steps out, then three steps out, and so on. The following code
demonstrates how to perform a breadth-first search.

def bfs(graph, start):
queue = [start]
queued = list()
path = list()
while queue:
print ('Queue is: %s' % queue)
vertex = queue.pop(Q)
print ('Processing %s' % vertex)
for candidate in graph[vertex]:
if candidate not in queued:
queued . append(candidate)
queue . append(candidate)
path.append(vertex+'> '+candidate)
print ('Adding %s to the queue'
% candidate)
return path

176 PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

Q

TIP

steps = bfs(graph, 'A')
print ('\nBFS:', steps)

Queue is: ['A']
Processing A

Adding B to the queue
Adding C to the queue
Queue is: ['B', 'C']
Processing B

Adding A to the queue
Adding D to the queue
Queue is: ['C', 'A', 'D']
Processing C

Adding E to the queue
Queue is: ['A', 'D', 'E']
Processing A

Queue is: ['D', 'E']
Processing D

Adding F to the queue
Queue is: ['E', 'F']
Processing E

Queue is: ['F']
Processing F

BFS: ['A>B', 'A>C', 'B>A', 'B>D', 'C>E', 'D>F']

The output shows how the algorithm searches. It’s in the order that you expect —
one level at a time. The biggest advantage of using BEFS is that it’s guaranteed
to return the shortest path between two points as the first output when used to
find paths.

The example code uses a simple list as a queue. As described in Chapter 4, a queue
is a first in/first out (FIFO) data structure that works like a line at a bank, where
the first item put into the queue is also the first item that comes out. For this pur-
pose, Python provides an even better data structure called a deque (pronounced
deck). You create it using the deque function from the collections package. It
performs insertions and extractions in linear time, and you can use it as both a
queue and a stack. You can discover more about the deque function at https://
pymotw.com/2/collections/deque.html.

Applying depth-first search

In addition to BFS, you can use a depth-first search (DFS) to discover the vertexes
in a graph. When performing a DFS, the algorithm begins at the graph root and

CHAPTER 9 Reconnecting the Dots 177

https://pymotw.com/2/collections/deque.html
https://pymotw.com/2/collections/deque.html

then explores every node from that root down a single path to the end. It then
backtracks and begins exploring the paths not taken in the current search path
until it reaches the root again. At that point, if other paths to take from the root
are available, the algorithm chooses one and begins the same search again. The
idea is to explore each path completely before exploring any other path. To make
this search technique work, the algorithm must mark each vertex it visits. In this
way, it knows which vertexes require a visit and can determine which path to take
next. Using BFS or DFS can make a difference according to the way in which you
need to traverse a graph. From a programming point of view, the difference
between the two algorithms is how each one stores the vertexes to explore the
following:

3 Aqueue for BFS, a list that works according to the FIFO principle. Newly
discovered vertexes don't wait long for processing.

¥ Astack for DFS, a list that works according to the last in/first out (LIFO)
principle.

The following code shows how to create a DFS:

def dfs(graph, start):
stack = [start]
parents = {start: start}
path = list()
while stack:
print ('Stack is: %s' % stack)
vertex = stack.pop(-1)
print ('Processing %s' % vertex)
for candidate in graph[vertex]:
if candidate not in parents:
parents[candidate] = vertex
stack.append(candidate)
print ('Adding %s to the stack'
% candidate)
path.append(parents|[vertex]+'>'+vertex)
return path[1:]

steps = dfs(graph, 'A")
print ('\nDFS:', steps)

Stack is: ['A']
Processing A

Adding B to the stack
Adding C to the stack

178 PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

Stack is: ['B', 'C']
Processing C

Adding D to the stack
Adding E to the stack
Stack is: ['B', 'D', 'E']
Processing E

Adding F to the stack
Stack is: ['B', 'D', 'F']
Processing F

Stack is: ['B', 'D']
Processing D

Stack is: ['B']
Processing B

DFS: ['A>C', 'C>E', 'E>F', 'C>D', 'A>B']

The first line of output shows the actual search order. Note that the search begins
at the root, as expected, but then follows down the left side of the graph around to
the beginning. The final step is to search the only branch off the loop that creates
the graph in this case, which is D.

Note that the output is not the same as for the BFS. In this case, the processing
route begins with node A and moves to the opposite side of the graph, to node F.
The code then retraces back to look for overlooked paths. As discussed, this behav-
ior depends on the use of a stack structure in place of a queue. Reliance on a stack
means that you could also implement this kind of search using recursion. The use
of recursion would make the algorithm faster, so you could obtain results faster
than when using a BFS. The trade-off is that you use more memory when using
recursion.

When your algorithm uses a stack, it’s using the last result available (as contrasted
to a queue, where it would use the first result placed in the queue). Recursive
functions produce a result and then apply themselves using that same result.
A stack does exactly the same thing in an iteration: The algorithm produces a
result, the result is put on a stack, and then the result is immediately taken from
the stack and processed again.

Determining which application to use

The choice between BFS and DFS depends on how you plan to apply the output
from the search. Developers often employ BFS to locate the shortest route between
two points as quickly as possible. This means that you commonly find BFS used in
applications such as GPS, where finding the shortest route is paramount. For the
purposes of this book, you also see BFS used for spanning tree, shortest path, and
many other minimization algorithms.

CHAPTER 9 Reconnecting the Dots 179

A DFS focuses on finding an entire path before exploring any other path. You use
it when you need to search in detail, rather than generally. For this reason, you
often see DFS used in games, where finding a complete path is important. It’s also
an optimal approach to perform tasks such as finding a solution to a maze.

each technique. BFS needs lots of memory because it systematically stores all the
paths before finding a solution. On the other hand, DFS needs less memory, but
rememser you have no guarantee that it’ll find the shortest and most direct solution.

@ Sometimes you have to decide between BFS and DFS based on the limitations of

Sorting the Graph Elements

The ability to search graphs efficiently relies on sorting. After all, imagine going
to a library and finding the books placed in any order the library felt like put-
ting them on the shelves. Locating a single book would take hours. A library
works because the individual books appear in specific locations that make them
easy to find.

Libraries also exhibit another property that’s important when working with cer-
tain kinds of graphs. When performing a book search, you begin with a specific
category, then a row of books, then a shelf in that row, and finally the book. You
move from less specific to more specific when performing the search, which
means that you don’t revisit the previous levels. Therefore, you don’t end up in
odd parts of the library that have nothing to do with the topic at hand.

GRAPHS WITH LOOPS

Sometimes you need to express a process in such a manner that a set of steps repeats.
For example, when washing your car, you rinse, soap down, and then rinse again.
However, you find a dirty spot, an area that the soap didn't clean the first time. To clean
that spot, you soap it again and rinse it again to verify that the spot is gone.
Unfortunately, it's a really stubborn spot, so you repeat the process again. In fact, you
repeat the soap and rinse steps until the spot is clean. That's what a loop does; it creates
a situation in which a set of steps repeats in one of two ways:

® Meets a specific condition: The spot on the car is gone.

® Performs a specific number of times: This is the number of repetitions you
perform during the exercise.

180 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

©

REMEMBER

The following sections review Directed Acyclic Graphs (DAGs), which are finite
directed graphs that don’t have any loops in them. In other words, you start from
a particular location and follow a specific route to an ending location without ever
going back to the starting location. When using topological sorting, a DAG always
directs earlier vertexes to later vertexes. This kind of graph has all sorts of practical
uses, such as schedules, with each milestone representing a particular milestone.

Working on Directed Acyclic Graphs (DAGS)

DAGs are one of the most important kinds of graphs because they see so many
practical uses. The basic principles of DAGs are that they

¥ Follow a particular order so that you can't get from one vertex to another and
back to the beginning vertex using any route.

¥ Provide a specific path from one vertex to another so that you can create a
predictable set of routes.

You see DAGs used for many organizational needs. For example, a family tree is an
example of a DAG. Even when the activity doesn’t follow a chronological or other
overriding order, the DAG enables you to create predictable routes, which makes
DAGs easier to process than many other kinds of graphs you work with.

However, DAGs can use optional routes. Imagine that you’re building a burger.
The menu system starts with a bun bottom. You can optionally add condiments to
the bun bottom, or you can move directly to the burger on the bun. The route
always ends up with a burger, but you have multiple paths for getting to the
burger. After you have the burger in place, you can choose to add cheese or bacon
before adding the bun top. The point is that you take a specific path, but each path
can connect to the next level in several different ways.

So far, the chapter has shown you a few different kinds of graph configura-
tions, some of which can appear in combination, such as a directed, weighted,
dense graph:

¥ Directed: Edges have a single direction and can have these additional
properties:

Cyclic: The edges form a cycle that take you back to the initial vertex after
having visited the intermediary vertexes.

A-cyclic: This graph lacks cycles.

3 Undirected: Edges connect vertexes in both directions.

CHAPTER 9 Reconnecting the Dots 181

182

3 Weighted: Each edge has a cost associated with it, such as time, money, or
energy, which you must pay to pass through it.

3 Unweighted: All the edges have no cost or the same cost.

¥ Dense: A graph that has a large number of edges when compared to the
number of vertexes.

¥ Sparse: A graph that has a small number of edges when compared to the
number of vertexes.

Relying on topological sorting

An important element of DAGs is that you can represent a myriad of activities
using them. However, some activities require that you approach tasks in a specific
order. This is where topological sorting comes into play. Topological sorting orders
all the vertexes of a graph on a line with the direct edges pointing from left to
right. Arranged in such a fashion, the code can easily traverse the graph and pro-
cess the vertexes one after the other, in order.

When you use topological sorting, you organize the graph so that every graph ver-
tex leads to a later vertex in the sequence. For example, when creating a schedule
for building a skyscraper, you don’t start at the top and work your way down. You
begin with the foundation and work your way up. Each floor can represent a mile-
stone. When you complete the second floor, you don’t go to the third and then redo
the second floor. Instead, you move on from the third floor to the fourth floor, and
so on. Any sort of scheduling that requires you to move from a specific starting
point to a specific ending point can rely on a DAG with topological sorting.

Topological sorting can help you determine that your graph has no cycles (because
otherwise, you can’t order the edges connecting the vertexes from left to right; at
least one node will refer to a previous node). In addition, topological sorting also
proves helpful in algorithms that process complex graphs because it shows the
best order for processing them.

You can obtain topological sorting using the DFS traversal algorithm. Simply note
the processing order of the vertexes by the algorithm. In the previous example, the
output appears in this order: A, C, E, F, D, and B. Follow the sequence in Figure 9-1
and you notice that the topological sorting follows the edges on the external
perimeter of graph. It then makes a complete tour: After reaching the last node of
the topological sort, you’re just a step away from A, the start of the sequence.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Reducing to a Minimum Spanning Tree

REMEMBER

Many problems that algorithms solve rely on defining a minimum of resources to
use, such as defining an economical way to reach all the points on a map. This
problem was paramount in the late nineteenth and early twentieth centuries when
railway and electricity networks started appearing in many countries, revolution-
izing transportation and ways of living. Using private companies to build such
networks was expensive (it took a lot of time and workers). Using less material
and a smaller workforce offered savings by reducing redundant connections.

Some redundancy is desirable in critical transportation or energy networks even
when striving for economical solutions. Otherwise, if only one method connects
the network, it’s easily disrupted accidentally or by a voluntary act (such as an act
of war), interrupting services to many customers.

In Moravia, the eastern part of Czech Republic, the Czech mathematician Otakar
Bortivka found a solution in 1926 that allows constructing an electrical network
using the least amount of wire possible. His solution is quite efficient because it
not only allows finding a way to connect all the towns in Moravia in the most
economical way possible, but it had a time complexity of O(m*log n), where m is
the number of edges (the electrical cable) and n the number of vertexes (the
towns). Others have improved Bortivka’s solution since then. (In fact, algorithm
experts partially forgot and then rediscovered it.) Even though the algorithms you
find in books are better designed and easier to grasp (those from Prim and Krus-
kal), they don’t achieve better results in terms of time complexity.

A minimal spanning tree defines the problem of finding the most economical way
to accomplish a task. A spanning tree is the list of edges required to connect all the
vertexes in an undirected graph. A single graph could contain multiple spanning
trees, depending on the graph arrangement, and determining how many trees it
contains is a complex issue. Each path you can take from start to completion in a
graph is another spanning tree. The spanning tree visits each vertex only once; it
doesn’t loop or do anything to repeat path elements.

When you work on an unweighted graph, the spanning trees are the same length.
In unweighted graphs, all edges have the same length, and the order you visit
them in doesn’t matter because the run path is always the same. All possible
spanning trees have the same number of edges, n-1 edges (n is the number of
vertexes), of the same exact length. Moreover, any graph traversal algorithm,
such as BFS or DFS, suffices to find one of the possible spanning trees.

Things become tricky when working with a weighted graph with edges of differ-

ent lengths. In this case, of the many possible spanning trees, a few, or just one,
have the minimum length possible. A minimum spanning tree is the one spanning

CHAPTER 9 Reconnecting the Dots 183

tree that guarantees a path with the least possible edge weight. An undirected
graph generally contains just one minimum spanning tree, but, again, it depends
on the configuration. Think about minimum spanning trees this way: When look-
ing at a map, you see a number of paths to get from point A to point B. Each path
has places where you must turn or change roads, and each of these junctions is a
vertex. The distance between vertexes represents the edge weight. Generally, one
path between point A and point B provides the shortest route.

However, minimum spanning trees need not always consider the obvious. For
example, when considering maps, you might not be interested in distance; you
might instead want to consider time, fuel consumption, or myriad other needs.
Each of these needs could have a completely different minimum spanning tree.
With this in mind, the following sections help you understand minimum spanning
trees better and demonstrate how to solve the problem of figuring out the smallest
edge weight for any given problem. To demonstrate a minimum spanning tree
solution using Python, the following code updates the previous graph by adding
edge weights. (You can find this code in the A4D; ©@9; Minimum Spanning Tree.
ipynb file on the Dummies site as part of the downloadable code; see the Intro-
duction for details.)

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt
#matplotlib inline

graph = {'A': {'B':2, 'C':3},

'B': {'A':2, 'C':2, 'D':2},
'c': {'A':3, 'B':2, 'D':3, 'E':2},
'D': {'B':2, 'C':3, 'E':1, 'F':3},
'E': {'C':2, 'D':1, 'F':1},
'"F': {'D':3, '"E':1}}

Graph = nx.Graph()
for node in graph:
Graph.add_nodes_from(node)
for edge, weight in graph[node].items():
Craph.add_edge(node, edge, weight=weight)

pos = { 'A': [0.00, ©0.50], 'B': [0.25, ©.75],
'C': [0.25, ©.25], 'D': [0.75, 0.75],
'E': [0.75, ©.25], 'F': [1.00, 0.50]}

labels = nx.get_edge_attributes(Graph, 'weight')
nx.draw(Graph, pos, with_labels=True)
184 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 9-2:

The example
graph becomes
weighted.

©

REMEMBER

nx.draw_networkx_edge_labels(Graph, pos,
edge_labels=1abels)

nx .draw_networkx(Graph, pos)

plt.show()

Figure 9-2 shows that all edges have a value now. This value can represent some-
thing like time, fuel, or money. Weighted graphs can represent many possible
optimization problems that occur in geographical space (such as movement
between cities) because they represent situations in which you can come and go
from a vertex.

2
Vv N
N e —
2@ y
2

Interestingly, all edges have positive weights in this example. However, weighted
graphs can have negative weights on some edges. Many situations take advantage
of negative edges. For instance, they’re useful when you can both gain and lose
from moving between vertexes, such as gaining or losing money when transport-
ing or trading goods, or releasing energy in a chemical process.

Not all algorithms are well suited for handling negative edges. It’s important to
note those that can work with only positive weights.

Discovering the correct algorithms to use

You can find many different algorithms to use to create a minimum spanning tree.
The most common are greedy algorithms, which run in polynomial time. Poly-
nomial time is a power of the number of edges, such as O(n?) or O(n3) (see Part 5 for
additional information about polynomial time). The major factors that affect the
running speed of such algorithms involve the decision-making process — that is,

CHAPTER 9 Reconnecting the Dots 185

whether a particular edge belongs in the minimum spanning tree or whether the
minimum total weight of the resulting tree exceeds a certain value. With this
in mind, here are some of the algorithms available for solving a minimum span-
ning tree:

% Boruvka's: Invented by Otakar Bor(vka in 1926 to solve the problem of
finding the optimal way to supply electricity in Moravia. The algorithm relies
on a series of stages in which it identifies the edges with the smallest weight in
each stage. The calculations begin by looking at individual vertexes, finding
the smallest weight for that vertex, and then combining paths to form forests
of individual trees until it creates a path that combines all the forests with the
smallest weight.

3 Prim’s: Originally invented by Jarnik in 1930, Prim rediscovered it in 1957. This
algorithm starts with an arbitrary vertex and grows the minimum spanning
tree one edge at a time by always choosing the edge with the least weight.

3 Kruskal's: Developed by Joseph Kruskal in 1956, it uses an approach that
combines BorUvka's algorithm (creating forests of individual trees) and Prim's
algorithm (looking for the minimum edge for each vertex and building the
forests one edge at a time).

3 Reverse-delete: This is actually a reversal of Kruskal's algorithm. It isn't
commonly used.

among the families of algorithms, and you see them in detail in Chapter 15. In a
greedy approach, the algorithm gradually arrives at a solution by taking, in an irre-

TIP versible way, the best decision available at each step. For instance, if you need the
shortest path between many vertexes, a greedy algorithm takes the shortest edges
among those available between all vertexes.

' These algorithms use a greedy approach. Greedy algorithms appear in Chapter 2

Introducing priority queues

Later in this chapter, you see how to implement Prim’s and Kruskal’s algorithm
for a minimum spanning tree, and Dijkstra’s algorithm for the shortest path in a
graph using Python. However, before you can do that, you need a method to find
the edges with the minimum weight among a set of edges. Such an operation
implies ordering, and ordering elements costs time. It’s a complex operation, as
described in Chapter 7. Because the examples repeatedly reorder edges, a data
structure called the priority queue comes in handy.

Priority queues rely on heap tree-based data structures that allow fast element
ordering when you insert them inside the heap. Like the magician’s magic hat,
priority heaps store edges with their weights and are immediately ready to provide
you with the inserted edge whose weight is the minimum among those stores.

186 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

This example uses a class that allows it to perform priority-queue comparisons
that determine whether the queue contains elements and when those elements
contain a certain edge (avoiding double insertions). The priority queue has another
useful characteristic (whose usefulness is explained when working on Dijkstra’s
algorithm): If you insert an edge with a different weight than previously stored,
the code updates the edge weight and rearranges the edge position in the heap.

from heapq import heapify, heappop, heappush

class priority_queue():
def __init__(self)
self.queue = list()
heapify(self.queue)
self.index = dict()
def push(self, priority, label):
if label in self.index:
self.queue = [(w,1)
for w,1 in self.queue if 1l!=label]
heapify(self.queue)
heappush(self.queue, (priority, label))
self.index[label] = priority
def pop(self):
if self.queue:
return heappop(self.queue)
def __contains__(self, label):
return label in self.index
def __len__(self):
return len(self.queue)

Leveraging Prim'’s algorithm

Prim’s algorithm generates the minimum spanning tree for a graph by traversing
the graph vertex by vertex. Starting from any chosen vertex, the algorithm adds
edges using a constraint in which, if one vertex is currently part of the spanning
tree and the second vertex isn’t part of it, the edge weight between the two must be
the least possible among those available. By proceeding in this fashion, creating
cycles in the spanning tree is impossible (it could happen only if you add an edge
whose vertexes are already both in the spanning tree) and you’re guaranteed to
obtain a minimal tree because you add the edges with the least weight. In terms of
steps, the algorithm includes these three phases, with the last one being iterative:

1. Track both the edges of the minimum spanning tree and the used vertexes as
they become part of the solution.

CHAPTER 9 Reconnecting the Dots 187

2. Startfrom any vertex in the graph and place it into the solution.
3. Determine whether there are still vertexes that aren't part of the solution:
Enumerate the edges that touch the vertexes in the solution.

Insert the edge with the minimum weight into the spanning tree. (This is
the greedy principle at work in the algorithm: Always choose the minimum
at each step to obtain an overall minimum result.)

By translating these steps into Python code, you can test the algorithm on the
example weighted graph using the following code:

def prim(graph, start):
treepath = {}
total = @
queue = priority_queue()
queue.push(@ , (start, start))
while queue:
weight, (node_start, node_end) = queue.pop()
if node_end not in treepath:
treepath[node_end] = node_start
if weight:
print("Added edge from %s" \
" to %s weighting %i"
% (node_start, node_end, weight))
total += weight
for next_node, weight \
in graph[node_end] .items():
queue.push(weight , (node_end, next_node))
print ("Total spanning tree length: %i" % total)
return treepath

treepath = prim(graph, 'A')

Added edge from A to B weighting 2
Added edge from B to C weighting 2
Added edge from B to D
Added edge from D to E weighting 1
Added edge from E to F weighting 1

Total spanning tree length: 8

weighting 2

The algorithm prints the processing steps, showing the edge it adds at each stage
and the weight the edge adds to the total. The example displays the total sum of
weights and the algorithm returns a Python dictionary containing the ending
vertex as key and the starting vertex as value for each edge of the resulting

188 PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

spanning tree. Another function, represent_tree, turns the key and value pairs
of the dictionary into a tuple and then sorts each of the resulting tuples for better
readability of the tree path:

def represent_tree(treepath):
progression = list()
for node in treepath:
if node != treepath[node]:
progression.append((treepath[node], node))
return sorted(progression, key=lambda x:x[0Q])

print (represent_tree(treepath))
[(*A*,'B"), ('B','C'), ('B','D"), ('D','E"), ('E','F")]

The represent_tree function reorders the output of Prim’s algorithm for better
readability. However, the algorithm works on an undirected graph, which means
that you can traverse the edges in both directions. The algorithm incorporates this
assumption because there is no edge directionality check to add to the priority
queue for later processing.

Testing Kruskal’s algorithm

Kruskal’s algorithm uses a greedy strategy, just as Prim’s does, but it picks the
shortest edges from a global pool containing all the edges (whereas Prim’s evalu-
ates the edges according to the vertexes in the spanning tree). To determine
whether an edge is a suitable part of the solution, the algorithm relies on an
aggregative process in which it gathers vertexes together. When an edge involves
vertexes already in the solution, the algorithm discards it to avoid creating a cycle.
The algorithm proceeds in the following fashion:

1. putalithe edges into a heap and sort them so that the shortest edges are on top.

2. Createasetof trees, each one containing only one vertex (so that the number
of trees is the same number as the vertexes). You connect trees as an aggre-
gate until the trees converge into a unique tree of minimal length that spans all
the vertexes.

3. Repeat the following operations until the solution doesn’t contain as many
edges as the number of vertexes in the graph:

a. Choose the shortest edge from the heap.

b. Determine whether the two vertexes connected by the edge appear in
different trees from among the set of connected trees.

CHAPTER 9 Reconnecting the Dots 189

c. When the trees differ, connect the trees using the edge (defining an
aggregation).

d. When the vertexes appear in the same tree, discard the edge.

e. Repeat steps a through d for the remaining edges on the heap.
The following example demonstrates how to turn these steps into Python code:

def kruskal(graph):
priority = priority_queue()
print ("Pushing all edges into the priority queue")
treepath = list()
connected = dict()
for node in graph:
connected[node] = [node]
for dest, weight in graph[node].items():
priority.push(weight, (node,dest))
print ("Totally %i edges" % len(priority))
print ("Connected components: %s"
% connected.values())

total = @
while len(treepath) < (len(graph)-1):
(weight, (start, end)) = priority.pop()
if end not in connected[start]:
treepath.append((start, end))
print ("Summing %s and %s components:"
% (connected[start],connected[end]))
print ("\tadded edge from %s " \
"to %s weighting %i"
% (start, end, weight))
total += weight
connected[start] += connected[end] [:]
for element in connected[end]:
connected[element]= connected[start]
print ("Total spanning tree length: %i" % total)
return sorted(treepath, key=lambda x:x[Q])

print ('\nMinimum spanning tree: %s' % kruskal(graph))
Pushing all edges into the priority queue
Totally 9 edges

Connected components: dict_values([['A'], ['E'], ['F'],

('s'], ['p'], ['Cc'1])

190 PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

TIP

Summing ['E'] and ['D'] components:

added edge from E to D weighting 1
Summing ['E', 'D'] and ['F'] components:

added edge from E to F weighting 1
Summing ['A'] and ['B'] components:

added edge from A to B weighting 2
Summing ['A', 'B'] and ['C'] components:

added edge from B to C weighting 2
Summing ['A', 'B', 'C'] and ['E', 'D', 'F'] components:

added edge from B to D weighting 2
Total spanning tree length: 8

Minimum spanning tree:
[(("A*,'B"), ('B",'C"), ('B','D"), ('E','D"), ('E','F")]

Kruskal’s algorithm offers a solution that’s similar to the one proposed by Prim’s
algorithm. However, different graphs may provide different solutions for the
minimum spanning tree when using Prim’s and Kruskal’s algorithms because
each algorithm proceeds in different ways to reach its conclusions. Different
approaches often imply different minimal spanning trees as output.

Determining which algorithm works best

Both Prim’s and Kruskal’s algorithms output a single connected component, join-
ing all the vertexes in the graph by using the least (or one of the least) long
sequences of edges (a minimum spanning tree). By summing the edge weights,
you can determine the length of the resulting spanning tree. Because both algo-
rithms always provide you with a working solution, you must rely on running
time and decide whether they can take on any kind of weighted graph to deter-
mine which is best.

As for running time, both algorithms provide similar results with Big-O complex-
ity rating of O(E*log(V)), where E is the number of edges and V the number of
vertexes. However, you must account for how they solve the problem because
there are differences in the average expected running time.

Prim’s algorithm incrementally builds a single solution by adding edges, whereas
Kruskal’s algorithm creates an ensemble of partial solutions and aggregates them.
In creating its solution, Prim’s algorithm relies on data structures that are more
complex than Kruskal’s because it continuously adds potential edges as candi-
dates and keeps picking the shortest edge to proceed toward its solution. When
operating on a dense graph, Prim’s algorithm is preferred over Kruskal’s because
its priority queue based on heaps does all the sorting jobs quickly and efficiently.

CHAPTER 9 Reconnecting the Dots 191

©

REMEMBER

The example uses a priority queue based on a binary heap for the heavy job of
picking up the shortest edges, but there are even faster data structures, such as
the Fibonacci heap, which can produce faster results when the heap contains many
edges. Using a Fibonacci heap, the running complexity of Prim’s algorithm can
mutate to O(E +V*1log(V)), which is clearly advantageous if you have a lot of edges
(the E component is now summed instead of multiplied) compared to the previous
reported running time O(E*log(V)).

Kruskal’s algorithm doesn’t much need a priority queue (even though one of the
examples uses one) because the enumeration and sorting of edges happens just
once at the beginning of the process. Being based on simpler data structures that
work through the sorted edges, it’s the ideal candidate for regular, sparse graphs
with fewer edges.

Finding the Shortest Route

192

The shortest route between two points isn’t necessarily a straight line, especially
when a straight line doesn’t exist in your graph. Say that you need to run electrical
lines in a community. The shortest route would involve running the lines as
needed between each location without regard to where those lines go. However,
real life tends not to allow a simple solution. You may need to run the cables
beside roads and not across private property, which means finding routes that
reduce the distances as much as possible.

Defining what it means to
find the shortest path

Many applications exist for shortest-route algorithms. The idea is to find the path
that offers the smallest distance between point A and point B. Finding the shortest
path is useful for both transportation (how to arrive at a destination consuming
the least fuel) and communication (how to route information to allow it to arrive
earlier). Nevertheless, unexpected applications of the shortest-path problem may
also arise in image processing (for separating contours of images), gaming (how
to achieve certain game goals using the fewest moves), and many other fields in
which you can reduce the problem to an undirected or directed weighted graph.

The Dijkstra algorithm can solve the shortest-path problem and has found the
most uses. Edsger W. Dijkstra, a Dutch computer scientist, devised the algorithm
as a demonstration of the processing power of a new computer called ARMAC
(http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html) in 1959.
The algorithm initially solved the shortest distance between 64 cities in the
Netherlands based on a simple graph map.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

Konkurcomputer.ir g —

http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

Other algorithms can solve the shortest-path problem. The Bellman-Ford and
Floyd-Warshall are more complex but can handle graphs with negative weights.
(Negative weights can represent some problems better.) Both algorithms are
beyond the scope of this book, but the site at https://www.hackerearth.com/
ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/ pro-
vides additional information about them. Because the shortest-path problem
involves graphs that are both weighted and directed, the example graph requires
another update before proceeding (you can see the result in Figure 9-3). (You can
find this code in the A4D; ©9; Shortest Path.ipynb file on the Dummies site

as part of the downloadable code; see the Introduction for details.)

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt
#matplotlib inline

graph = {'A': {'B':2, 'C':3},
'B': {'C':2, 'D':2},
'c': {'D':3, 'E':2},

'D': {'F':3},
'E': {'D':1,'F':1},
B {1}

Graph = nx.DiGraph()
for node in graph:
Graph.add_nodes_from(node)
for edge, weight in graph[node].items():
Craph.add_edge(node, edge, weight=weight)

pos = { 'A': [0.00, ©0.50], 'B': [0.25, ©.75],
'C': [0.25, ©.25], 'D': [0.75, 0.75],
'E': [0.75, ©.25], 'F': [1.00, 0.50]}

labels = nx.get_edge_attributes(Graph, 'weight')

nx.draw(Graph, pos, with_labels=True)

nx .draw_networkx_edge_labels(Graph, pos,
edge_labels=1abels)

nx .draw_networkx(Graph, pos)

plt.show()

CHAPTER 9 Reconnecting the Dots

193

https://www.hackerearth.com/ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/
https://www.hackerearth.com/ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/

2
Vv N
8]) —
o ~
FIGURE 9-3:
The example
graph becomes
weighted and 2
directed.

Explaining Dijkstra’s algorithm

Dijkstra’s algorithm requires a starting and (optionally) ending vertex as input. If
you don’t provide an ending vertex, the algorithm computes the shortest distance
between the starting vertex and any other vertexes in the graph. When you define
an ending vertex, the algorithm stops upon reading that vertex and returns the
result up to that point, no matter how much of the graph remains unexplored.

The algorithm starts by estimating the distance of the other vertexes from the
starting point. This is the starting belief it records in the priority queue and is set
to infinity by convention. Then the algorithm proceeds to explore the neighboring
nodes, similar to a BFS. This allows the algorithm to determine which nodes are
near and that their distance is the weight of the connecting edges. It stores this
information in the priority queue by an appropriate weight update.

Naturally, the algorithm explores the neighbors because a directed edge connects
them with the starting vertex. Dijkstra’s algorithm accounts for the edge direction.

REMEMBER
At this point, the algorithm moves to the nearest vertex on the graph based on the

shortest edge in the priority queue. Technically, the algorithm visits a new vertex.
It starts exploring the neighboring vertexes, excluding the vertexes that it has
already visited, determines how much it costs to visit each of the unvisited ver-
texes, and evaluates whether the distance to visit them is less than the distance it
recorded in the priority queue.

When the distance in the priority queue is infinite, this means that it’s the algo-
rithm’s first visit to that vertex, and the algorithm records the shorter distance.

194 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] Hiquolss |g=is (O)

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

When the distance recorded in the priority queue isn’t infinite, but it’s more than
the distance that the algorithm has just calculated, it means that the algorithm
has found a shortcut, a shorter way to reach that vertex from the starting point,
and it stores the information in the priority queue. Of course, if the distance
recorded in the priority queue is shorter than the one just evaluated by the algo-
rithm, the algorithm discards the information because the new route is longer.
After updating all the distances to the neighboring vertexes, the algorithm deter-
mines whether it has reached the end vertex. If not, it picks the shortest edge
present in the priority queue, visits it, and starts evaluating the distance to the
new neighboring vertexes.

As the narrative of the algorithm explained, Dijikstra’s algorithm keeps a precise
accounting of the cost to reach every vertex that it encounters, and it updates its
information only when it finds a shorter way. The running complexity of the algo-
rithm in Big-0 notation is O(E*log(V)), where E is the number of edges and V the
number of vertexes in the graph. The following code shows how to implement
Dijikstra’s algorithm using Python:

def dijkstra(graph, start, end):
inf = float('inf")
known = set()
priority = priority_queue()
path = {start: start}

for vertex in graph:

if vertex == start:
priority.push(@, vertex)
else:
priority.push(inf, vertex)
last = start
while last != end:

(weight, actual_node) = priority.pop()
if actual_node not in known:
for next_node in graph[actual_node] :
upto_actual = priority.index[actual_node]
upto_next = priority.index[next_node]
to_next = upto_actual + \
graph[actual_node] [next_node]
if to_next < upto_next:
priority.push(to_next, next_node)
print("Found shortcut from %s to %s"
% (actual_node, next_node))
print ("\tTotal length up so far: %i"

CHAPTER 9 Reconnecting the Dots 195

% to_next)
path[next_node] = actual_node

last = actual_node
known .add(actual_node)

return priority.index, path
dist, path = dijkstra(graph, 'A', 'F'")

Found shortcut from A to C
Total length up so far: 3
Found shortcut from A to B
Total length up so far: 2
Found shortcut from B to D
Total length up so far: 4
Found shortcut from C to E
Total length up so far: 5
Found shortcut from D to F
Total length up so far: 7
Found shortcut from E to F
Total length up so far: 6

The algorithm returns a couple of useful pieces of information: the shortest path
to destination and the minimum recorded distances for the visited vertexes. To
visualize the shortest path, you need a reverse_path function that rearranges the
path to make it readable:

def reverse_path(path, start, end):
progression = [end]
while progression[-1] != start:
progression.append(path[progression[-1]])
return progression[::-1]
print (reverse_path(path, 'A', 'F'))
[IAI, vcv/ 'E'/ IFI]

You can also know the shortest distance to every node encountered by querying
the dist dictionary:

print (dist)

{'D': 4, 'A'": @, 'B': 2, 'F': 6, 'C': 3, 'E': 5}

196 PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Seeing social networks in graph form

» Interacting with graph content

Chapter 10

Discovering Graph
Secrets

hapter 8 helps you understand the foundations of graphs as they apply to

mathematics. Chapter 9 increases your knowledge by helping you see the

relationship of graphs to algorithms. This chapter helps you focus on
applying the theories of these previous two chapters to interact with graphs in
practical ways.

The first section conveys the character of social networks by using graphs.
Considering the connections created by social networks is important. For example,
conversation analysis can reveal patterns that help you understand the underlying
topic better than simply reading the conversations would do. A particular
conversation branch might attract greater attention because it’s more important
than another conversation branch. Of course, you must perform this analysis
while dealing with issues such as spam. Analysis of this sort can lead to all sorts
of interesting conclusions, such as where to spend more advertising money in
order to attract the most attention and, therefore, sales.

The second section looks at navigating graphs to achieve specific results. For
example, when driving, you might need to know the best route to take between two
points given that, even though one route is shorter, it also has construction that
makes a second route better. Sometimes you need to randomize your search to
discover a best route or a best conclusion. This section of the chapter also dis-
cusses that issue.

CHAPTER 10 Discovering Graph Secrets 197

Envisioning Social Networks as Graphs

198

TIP

Every social interaction necessarily connects with every other social interaction of
the same type. For example, consider a social network such as Facebook. The links
on your page connect with family members, but they also connect with outside
sources that in turn connect with other outside sources. Each of your family mem-
bers also has external links. Direct and indirect connections between various pages
eventually link every other page together, even though the process of getting from
one page to another may require the use of myriad links. Connectivity occurs in all
sorts of other ways as well. The point is that studying social networks simply by
viewing a Facebook page or other source of information is hard. Social Network
Analysis (SNA) is the process of studying the interactions in social networks using
graphs called sociograms, in which nodes (such as a Facebook page) appear as
points, and ties (such as external page links) appear as lines. The following sec-
tions discuss some of the issues surrounding the study of social networks as graphs.

Clustering networks in groups

People tend to form communities — clusters of other people who have like ideas
and sentiments. By studying these clusters, attributing certain behaviors to the
group as a whole becomes easier (although attributing the behavior to an indi-
vidual is both dangerous and unreliable). The idea behind the study of clusters is
that if a connection exists between people, they often have a common set of ideas
and goals. By finding clusters, you can determine these ideas by inspecting group
membership. For instance, it’s common to try to find clusters of people in insur-
ance fraud detection and tax inspection. Unexpected groups of people might raise
suspicion that they’re part of a group of fraudsters or tax evaders because they
lack the usual reasons for people to gather in such circumstances.

Friendship graphs can represent how people connect with each other. The vertexes
represent individuals and the edges represent their connections, such as family
relationships, business contacts, or friendship ties. Typically, friendship graphs
are undirected because they represent mutual relationships, and sometimes
they’re weighted to represent the strength of the bond between two persons.

Many studies focus on undirected graphs that concentrate solely on associations.
You can also use directed graphs to show that Person A knows about Person B, but
Person B doesn’t even know that Person A exists. In this case, you actually have 16
different kinds of triads to consider. For the sake of simplicity, this chapter focuses
solely on these four types: closed, open, connected pair, and unconnected.

When looking for clusters in a friendship graph, the connections between nodes in
these clusters depend on triads — essentially, special kinds of triangles. Connec-
tions between three people can fall into these categories:

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

¥ Closed: All three people know each other. Think about a family setting in this
case, in which everyone knows everyone else.

3 Open: One person knows two other people, but the two other people don't
know each other. Think about a person who knows an individual at work and
another individual at home, but the individual at work doesn’t know anything
about the individual at home.

3 Connected pair: One person knows one of the other people in a triad but
doesn't know the third person. This situation involves two people who know
something about each other meeting someone new — someone who
potentially wants to be part of the group.

3 Unconnected: The triad forms a group, but no one in the group knows each
other. This last one might seem a bit odd, but think about a convention or
seminar. The people at these events form a group, but they may not know
anything about each other. However, because they have similar interests, you
can use clustering to understand the behavior of the group.

Triads occur naturally in relationships, and many Internet social networks have
leveraged this idea to accelerate the connections between participants. The density
of connections is important for any kind of social network because a connected
network can spread information and share content more easily. For instance, when
LinkedIn, the professional social network (https://www.linkedin.com/), decided
to increase the connection density of its network, it started by looking for open
triads and trying to close them by inviting people to connect. Closing triads is at
the foundation of LinkedIn’s Connection Suggestion algorithm. You can discover
more about how it works by reading the Quora’s answer at: https://www.quora.
com/How-does-L inkedIns-People-You-May—-Know-work.

The example in this section relies on the Zachary’s Karate Club sample graph
described at https://networkdata.ics.uci.edu/data.php?id=105. It’s a small
graph that lets you see how networks work without spending a lot of time loading
a large dataset. Fortunately, this dataset appears as part of the networkx package
introduced in Chapter 8. The Zachary’s Karate Club network represents the friend-
ship relationships between 34 members of a karate club from 1970 to 1972.
Sociologist Wayne W. Zachary used it as a topic of study. He wrote a paper on it
entitled “An Information Flow Model for Conflict and Fission in Small Groups.”
The interesting fact about this graph and its paper is that in those years, a conflict
arose in the club between one of the karate instructors (node number 0) and the
president of the club (node number 33). By clustering the graph, you can almost
perfectly predict the split of the club into two groups shortly after the occurrence.

Because this example also draws a graph showing the groups (so that you can

visualize them easier), you also need to use thematplotlib package. The following
code shows how to graph the nodes and edges of the dataset. (You can find this

CHAPTER 10 Discovering Graph Secrets 199

https://www.linkedin.com/
https://www.quora.com/How-does-LinkedIns-People-You-May-Know-work
https://www.quora.com/How-does-LinkedIns-People-You-May-Know-work
https://networkdata.ics.uci.edu/data.php?id=105

FIGURE 10-1:

A graph showing
the network
clusters of
relationships
between friends.

©

REMEMBER

code in the A4D; 10; Social Networks.ipynb file on the Dummies site as part of
the downloadable code; see the Introduction for details.)

import networkx as nx
import matplotlib.pyplot as plt
#matplotlib inline

graph = nx.karate_club_graph()

pos=nx.spring_layout(graph)
nx.draw(graph, pos, with_labels=True)
plt.show()

To display the graphic onscreen, you also need to provide a layout that determines
how to position the nodes onscreen. This example uses the Fruchterman-Reingold
force-directed algorithm (the call to nx.spring_layout). However, you can
choose one of the other layouts described in the Graph Layout section at https://
networkx.github.io/documentation/networkx-1.9/reference/drawing.
html. Figure 10-1 shows the output from the example. (Your output may look
slightly different.)

The Fruchterman-Reingold force-directed algorithm for generating automatic
layouts of graphs creates understandable layouts with separated nodes and edges
that tend not to cross by mimicking what happens in physics between electrically
charged particles or magnets bearing the same sign. In looking at the graph

200 PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir gl —

https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html
https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html
https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

REMEMBER

output, you can see that some nodes have just one connection, some two, and
some more than two. The edges form triads, as previously mentioned. However,
the most important consideration is that Figure 10-1 clearly shows the clustering
that occurs in a social network.

Discovering communities

A group of tightly associated people often defines a community. In fact, the term
clique applies to a group whose membership to the group is exclusive and everyone
knows everyone else quite well. Most people have childhood memories of a tight
group of friends at school or in the neighborhood who always spent their time
together. That’s a clique.

You can find cliques in undirected graphs. Directed graphs distinguish strongly
between connected components when a direct connection exists between all the
node pairs in the component itself. A city is an example of a strongly connected
component because you can reach any destination from any starting point by
following one-way and two-way streets.

Mathematically, a clique is even more rigorous because it implies a subgraph (a
part of a network graph that you can separate from other parts as a complete ele-
ment in its own right) that has maximum connectivity. In looking at various kinds
of social networks, picking out the clusters is easy, but what can prove difficult is
finding the cliques — the groups with maximum connectivity — within the clus-
ters. By knowing where cliques exist, you can begin to understand the cohesive
nature of a community better. In addition, the exclusive nature of cliques tends to
create a group that has its own rules outside of those that might exist in the social
network as a whole. The following example shows how to extract cliques and
communities from the karate club graph used in the previous section:

graph = nx.karate_club_graph()
Finding and printing all cliques of four
cliques = nx.find_cliques(graph)
print ('All cliques of four: %s'
% [c for ¢ in cliques if len(c)>=4])

Joining cliques of four into communities

communities = nx.k_clique_communities(graph, k=4)

communities_list = [list(c) for ¢ in communities]

nodes_list = [node for community in communities_list for
node in community]

print ('Found these communities: %s' % communities_list)

CHAPTER 10 Discovering Graph Secrets 201

202

Printing the subgraph of communities
subgraph = graph.subgraph(nodes_list)
nx.draw(subgraph, with_labels=True)
plt.show()

All cliques of four: [[@, 1, 2, 3, 13], [0, 1, 2, 3, T],
[33, 32, 8, 30], [33, 32, 23, 29]]
Found these communities: [[Q, 1, 2, 3, 7, 13],
[32, 33, 29, 23], [32, 33, 8, 30]]

The example begins by extracting just the nodes in the karate club dataset that
have four or more connections, and then prints the cliques with a minimum size
of four. Of course, you can set any level of connections needed to obtain the desired
resource. Perhaps you consider a clique a community in which each node has
twenty connections, but other people might see a clique as a community where
each node has just three connections.

The list of cliques doesn’t really help you much, though, if you want to see the
communities. To see them, you need to rely on specialized and complex
algorithms to merge overlapping cliques and find clusters, such as the clique
percolation method described at https://gaplogs.net/2012/04/01/simple-
community-detection-algorithms/. The NetworkX package offers k_clique_
communities, an implementation of the clique percolation algorithm, which
results in the union of all the cliques of a certain size (the k parameter). These
cliques of a certain size share k-1 elements (that is, they differ by just one
component, a truly strict rule).

Clique percolation provides you with a list of all the communities found. In this
example, one clique revolves around the karate instructor and another revolves
around the president of the club. In addition, you can extract all the nodes that are
part of a community into a single set, which helps you create a subgraph made of
just communities.

Finally, you can draw the subgraph and display it. Figure 10-2 shows the output
of this example, which displays the ensemble of cliques with four or more
connections.

Finding cliques in graphs is a complex problem requiring many computations (it’s
a difficult problem) that an algorithm solves using a brute-force search, which
means trying all possible subsets of vertexes to determine whether they’re cliques.
With some luck, because some randomization is needed for the algorithm to
succeed, you can find a large clique using a simple approach whose complexity is
O(n+m), where n is the number of vertexes and m the edges. The following steps
describe this process.

PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://gaplogs.net/2012/04/01/simple-community-detection-algorithms/
https://gaplogs.net/2012/04/01/simple-community-detection-algorithms/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

FIGURE 10-2:
Communities
often contain

cliques that can
prove useful
for SNA.

1. Sortthe vertexes by degree (which is the number of vertex connections), from
the highest to the lowest.

Place the vertex with the highest degree into the clique (or as an alternative,
randomly choose from one of the highest-degree vertexes).

Repeat Steps 1 and 2 until you have no more vertexes to test.

Hw N

Verify the next vertex as being part of the clique:
If it's part of the clique, add it to the clique.

If it isn't part of the clique, repeat the test on the remaining vertexes.

At the end, after a few algorithm trials, you should have a list of vertexes that
constitutes the largest clique present in the graph.

Navigating a Graph

Navigating or traversing a graph means visiting each of the graph nodes. The pur-
pose of navigating a graph can include determining node content or updating it as
needed. When navigating a graph, it’s entirely possible that you visit particular
nodes more than once because of the connectivity that graphs provide. Conse-
quently, you also need to consider marking nodes as visited after you see their
content. The act of navigating a graph is important in determining how the nodes
connect so that you can perform various tasks. Previous chapters discuss basic
graph navigation techniques. The following sections help you understand a few of
the more advanced graph navigation techniques.

CHAPTER 10 Discovering Graph Secrets 203

Counting the degrees of separation

The term degrees of separation defines the distance between nodes in a graph.
When working with an undirected graph without weighted edges, each edge
counts for a value of one degree of separation. However, when working with other
sorts of graphs, such as maps, where each edge can represent a distance or time
value, the degrees of separation can become quite different. The point is that
degrees of separation indicate some sort of distance. The example in this section
(and the one that follows) relies on the following graph data. (You can find this
code in the A4D; 10; Graph Navigation.ipynb file on the Dummies site as part
of the downloadable code; see the Introduction for details.)

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

QMmoo Q W > W
|_|_'|

data = {'A':
'B":
'C" ¢
'D":
EN
F e
'G':
"H':

-n
ac

Q

(W)

-
@

>

— e

> T

graph = nx.DiGraph(data)
pos=nx.spring_layout(graph)
nx.draw_networkx_labels(graph, pos)
nx .draw_networkx_nodes(graph, pos)
nx .draw_networkx_edges(graph, pos)
plt.show()

This is an expansion of the graph used in Chapter 6. Figure 10-3 shows how this
graph appears so that you can visualize what the function call is doing. Note that
this is a directed graph (networkx DiGraph) because using a directed graph has
certain advantages when determining degrees of separation (and performing a
wealth of other calculations).

To discover the degrees of separation between two items, you must have a starting
point. For the purpose of this example, you can use node ’A’. The following code
shows the required networkx package function call and output:

nx.shortest_path_length(graph, 'A')

{*A': @, 'B': 1, 'C': 2, 'D': 3, 'E': 2, 'F': 1, 'G': 2,
"H': 1}

204 PART 3 Exploring the World of Graphs

urcomputer [www.konkurcomputer.ir] Foulspsis ()
konkurcomputer.ir g™

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

1.2 ; T T T T
1.0 - s
0.8 | .
0.6 | R
0.4} R
0.2 | R
FIGURE 10-3: 0.0 L .
A sample graph
used for
navigation |=0.2 ' ‘ L ! | .
purposes. -0.2 0.0 0.2 04 0.6 0.8 1.0 1.2

The distance between node A and node A is 0, of course. The greatest degree of
separation comes from node A to node D, which is 3. You can use this kind of infor-
mation to determine which route to take or to perform an analysis of the cost in
gas versus the cost in time of various paths. The point is that knowing the short-
est distance between two points can be quite important. The networkx package
used for this example comes in a wide array of distance-measuring algorithms,
as described at https://networkx.github.io/documentation/development/
reference/algorithms.shortest_paths.html.

= To see how using a directed graph can make a big difference when performing
\/ degrees-of-separation calculations, try removing the connection between nodes

tecunicae A and F. Change the data so that it looks like this:
STUFF

@mMmMmMoaO® >

data = {'A':
'B':
'C" ¢
'D":
EN
e
'G':
"H':

m o Q T

-
@

>

— e

> T

When you perform the call to nx.shortest_path_length this time, the output
becomes quite different because you can no longer go from A to F directly. Here’s
the new output from the call:

{'A': @, 'B': 1, 'C': 2, 'D': 3, 'E': 3, 'F': 4, 'G': 2,
"H': 1}

CHAPTER 10 Discovering Graph Secrets 205

https://networkx.github.io/documentation/development/reference/algorithms.shortest_paths.html
https://networkx.github.io/documentation/development/reference/algorithms.shortest_paths.html

206

Telegram Channel: @konkurcomputer

©

REMEMBER

Notice that the loss of the path has changed some of the degrees of separation.
The distance to node F is now the longest at 4.

Walking a graph randomly

You might find a need to walk a graph randomly. The act of walking the graph
randomly, rather than look for a specific path, can simulate natural activities,
such as an animal foraging for food. It also plays in to all sorts of other interesting
activities, such as playing games. However, random graph walking can have prac-
tical aspects. For example, a car is held up in traffic because of an accident, so the
shortest path is no longer available. In some cases, choosing a random alternative
might work best because traffic along the second shortest route could be heavy as
a result of the traffic jam along the shortest route.

The networkx package doesn’t provide the means for obtaining a random path
directly. However, it does provide the means for finding all available paths, after
which you can select a path from the list randomly. The following code shows how
this process might work using the graph from the previous section.

import random
random.seed(Q)

paths = nx.all_simple_paths(graph, 'A', 'H')
path_list = []
for path in paths:

path_list.append(path)
print("Path Candidate: ", path)

sel_path = random.randint(@, len(path_list) - 1)

print("The selected path is: ", path_list[sel_path])

Path Candidate: ['A', 'B', 'C', 'D', 'E', 'G', 'H']
Path Candidate: ['A', 'H']
Path Candidate: ['A', 'F', 'E', 'G', 'H']

The selected path is: ['A', 'H']

The code sets the seed to a specific value to ensure that you get the same result
every time. However, by changing the seed value, you can see different results
from the example code. The point is that even the simple graph shown in
Figure 10-3 offers three ways to get from node A to node H (two of which are
definitely longer than the selected path in this case). Choosing just one of them
ensures that you get from one node to the other, albeit by a potentially round-

about way.

PART 3 Exploring the World of Graphs

Fiquols jg=sis m

[www.konkurcomputer.ir] ol jgsis

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

IN THIS CHAPTER

» Understanding why finding what you
want on the web is hard

» Reviewing problems that PageRank
solves

» Implementing the PageRank
algorithm with teleporting

» Learning how PageRank usage is
evolving

Chapter 11

Getting the Right
Web page

he last few chapters review graphs at length. The web is one of the most

interesting examples because of its extent and complexity. After providing

an understanding of the basic algorithms that allow graph traversal and
extraction of useful structures (such as the presence of clusters or communities),
this chapter concludes the discussion of graphs by presenting the PageRank algo-
rithm that has revolutionized people’s lives as much as the web and Internet did
because it makes the web usable. PageRank isn’t only the engine behind Google
and many other search engines, but it’s also a smart way to derive latent informa-
tion, such as relevance, importance, and reputation, from a graph structure.

Libraries rely on catalogues and librarians to offer an easy way to find particular
texts or explore certain subjects. Books aren’t all the same: Some are good at pre-
senting certain kinds of information; some are better. Scholar recommendations
make a book an authoritative source because these recommendations often appear
in other books as quotes and citations. This sort of cross-reference didn’t exist on
the web initially. The presence of certain words in the title or in the text of the
body recommended a particular web page. This approach is practically like judg-
ing a book by its title and the number of words it contains.

CHAPTER 11 Getting the Right Web page 207

The PageRank algorithm changes all that by transforming the presence of the
links on pages and turning them into recommendations, akin to the input of
expert scholars. The growing scale of the web also plays a role in the success of the
algorithm. Good signals are easy to find and distinguished from noise because
they appear regularly. Noise, though confounding, is naturally casual. The larger
the web, the more likely you are to get good signals for a smart algorithm like
PageRank.

Finding the World in a Search Engine

208

For many people, their personal and professional lives are unthinkable without
the Internet and the web. The Internet network is composed of interconnected
pages (among other things). The web is composed of sites that are reachable by
domains, each one composed of pages and hyperlinks that connect sites internally
and with other sites externally. Service and knowledge resources are available
through the web if you know exactly where to look. Accessing the web is unthink-
able without search engines, those sites that allow you to find anything on the
web using a simple query.

Searching the Internet for data

With an estimated size of almost 50 billion pages (http://www.worldwide
websize.com/), the web isn’t easy to represent. Studies describe the web as a
bowtie shaped graph (see http://www.immorlica.com/socNet/broder.pdf and
http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.pdf). The
web mainly consists of an interconnected core and other parts that link to that
core. However, some parts are completely unreachable. By taking any road in the
real world, you can go anywhere (you may have to cross the oceans to do it). On
the web, you can’t touch all the sites just by following its structure; some parts
aren’t easily accessible (they are disconnected or you’re on the wrong side to
reach them). If you want to find something on the web, even when time isn’t a
problem, you still need an index.

Considering how to find the right data

Finding the right data has been a problem since the early years of the web, but the
first search engines didn’t appear until the 1990s. Search engines weren’t thought
of earlier because other solutions, such as simple domain listings or specialized
site catalogues, worked fine. Only when these solutions stopped scaling well
because of the rapidly growing size of the web did search engines such as Lycos,
Magellan, Yahoo, Excite, Inktomi, and Altavista appear.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir

http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
http://www.immorlica.com/socNet/broder.pdf
http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.pdf
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

URLs WITH .PDF EXTENSIONS

Many of the resource URLs found in this book have a .pdf extension. When you attempt
to open the link, you may see a warning from your browser indicating that the .pdf file
could contain a virus. It's entirely possible for a .pdf file to contain a virus (see http: //
security.stackexchange.com/questions/64052/can-a—pdf-file-contain-a-
virus for a discussion of the topic). However, the research .pdf file links provided in this
book are unlikely to contain viruses, so you can download them safely and then use a
scanner to verify the content. As with any online content, you're always better off to be
safe than sorry when it comes to files. Please do let us know if any of the .pdfs referenced
in the book actually do contain viruses by writing to John@JohnMuel 1erBooks . com.

In addition, please contact the webmaster for the site hosting the file.

All these search engines worked by having specialized software autonomously
visit the web, using domain lists and testing hyperlinks found on the visited pages.
These spiders explored each new link in a process called crawling. Spiders are pieces
of software that read the pages as plain text (they can’t understand images or
other nontextual content).

Early search engines worked by crawling the web, collecting the information from
spiders, and processing it in order to create inverted indexes. The indexes allowed
retracing pages based on the words they contained. When you made a query, such
inverted indexes reported all the pages containing the terms and helped score the
pages, thus creating a ranking that turned into a search result (a list of ordered
pages, ranging from the anticipated most useful page to the least useful page).

The scoring was quite naive because it often counted how frequently the keywords
appeared on pages or whether they appeared in the titles or in the header of the
page itself. Sometimes keywords were even scored more if they mixed or clustered
together. Clearly, such simple indexing and scoring techniques allowed some web
users to take advantage by using various tricks:

3 Web spammers: Used their ability to fill the search results with pages
containing poor content and a lot of advertising.

3 Black Hat search engine optimization (Black Hat SEO): Used by people who
employ their knowledge of search engines to make the search engine ranking
higher for pages they manipulated despite their poor quality. Unfortunately,
these issues still persist because every search engine, even the most evolved
ones, aren'timmune to people who want to game the system to obtain a
higher search engine ranking. The PageRank algorithm may eliminate many of
the older spammers and Black Hat SEO people, but it's not a panacea.

CHAPTER 11 Getting the Right Web page 209

http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
mailto:John@JohnMuellerBooks.com

It's essential to distinguish Black Hat SEO from White Hat SEO (usually simply
SEOQ). People who use White Hat SEO are professionals who employ their
knowledge of search engines to better promote valid and useful pages in a
legal and ethical way.

The emergence of such actors and the possibility of manipulating search engines’
results created the need for better ranking algorithms in search engines. One such
result is the PageRank algorithm.

Explaining the PageRank Algorithm

210

The PageRank algorithm is named after Google cofounder Larry Page. It made its
first public appearance in a 1998 paper entitled “The Anatomy of a LargeScale
Hypertextual Web Search Engine,” by Sergey Brin and Larry Page, published by
the journal Computer Networks and ISDN Systems (http://ilpubs.stanford.
edu:8090/361/1/1998-8.pdf). At that time, both Brin and Page were PhD candi-
dates, and the algorithm, the very foundation of Google’s search technology, was
initially a research project at Stanford University.

Simply stated, PageRank scores the importance of each node in a graph in such a
way that the higher the score the more important the node in a graph. Determin-
ing the node importance in a graph like the web means computing whether a page
is relevant as part of a query’s results, thus better servicing users looking for good
web content.

A page is a good response to a query when it matches the query’s criteria and has
prominence in the system of hyperlinks that ties pages together. The logic behind
prominence is that because users build the web, a page has importance in the
network for good reason (the quality and authority of the page’s content is
assessed by its importance in the web’s network of hyperlinks).

Understanding the reasoning behind
the PageRank algorithm

In 1998, when both Brin and Page were still students at Stanford, the quality of
search results was an issue for anyone using the web. Mainstream search engines
of the time struggled both with an ever-growing web structure (the next part of
the book discusses algorithm scaling issues and how to make them work with big
data) and with a myriad of spammers.

PART 3 Exploring the World of Graphs

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] roudls psis ()

konkurcomputer.ir

http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf
http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

©

REMEMBER

The use of spammers in this case doesn’t refer to email spammers (those spam-
mers who send unrequested emails to your Inbox) but rather to web spammers
(those who know the economic importance of having pages at the top of search
results). This group devised sophisticated and malicious tricks in order to fool
search results. Popular hacks by web spammers of the day include:

¥ Keyword stuffing: Implies overusing particular keywords in a page to trick the
search engine into thinking the page seriously discusses the keyword topic.

3 Invisible text: Requires copying the content of a page result on top of a
query i